000841898 001__ 841898
000841898 005__ 20240711085555.0
000841898 0247_ $$2doi$$a10.1016/j.actamat.2017.10.055
000841898 0247_ $$2ISSN$$a1359-6454
000841898 0247_ $$2ISSN$$a1873-2453
000841898 0247_ $$2Handle$$a2128/16553
000841898 0247_ $$2WOS$$aWOS:000424067100012
000841898 0247_ $$2altmetric$$aaltmetric:28813019
000841898 037__ $$aFZJ-2018-00195
000841898 082__ $$a670
000841898 1001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, J.$$b0$$eCorresponding author$$ufzj
000841898 245__ $$aUnveiling the mechanisms of cold sintering of ZnO at 250 °C by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy
000841898 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000841898 3367_ $$2DRIVER$$aarticle
000841898 3367_ $$2DataCite$$aOutput Types/Journal article
000841898 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515765380_31872
000841898 3367_ $$2BibTeX$$aARTICLE
000841898 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841898 3367_ $$00$$2EndNote$$aJournal Article
000841898 520__ $$aThe sintering behavior of nanocrystalline ZnO was investigated at only 250 °C. Densification was achieved by the combined effect of uniaxial pressure and the addition of water both in a Field Assisted Sintering Technology/Spark Plasma Sintering apparatus and a hand press with a heater holder. The final pure ZnO materials present high densities (>90% theoretical density) with nano-grain sizes. By measuring the shrinkage rate as a function of applied stress it was possible to identify the stress exponent related to the densification process. A value larger than one points to non-linear relationship going beyond single solid-state diffusion or liquid phase sintering. Only a low amount of water (1.7 wt%) was needed since the process is dictated by the adsorption on the surface of the ZnO particles. Part of the adsorbed water dissociates into H+ and OH− ions, which diffuse into the ZnO crystal structure, generating grain boundaries/interfaces with high defect chemistry. As characterized by Kelvin Probe Force Microscopy, and supported by impedance spectroscopy, this highly defective grain boundary area presents much higher surface energy than the bulk. This highly defective grain boundary area with high potential reduces the activation energy of the atomic diffusion, leading to sinter the compound at low temperature.
000841898 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000841898 588__ $$aDataset connected to CrossRef
000841898 7001_ $$0P:(DE-HGF)0$$aNeuhaus, K.$$b1
000841898 7001_ $$0P:(DE-Juel1)172628$$aBernemann, M.$$b2$$ufzj
000841898 7001_ $$0P:(DE-Juel1)171464$$aPereira da Silva, J.$$b3$$ufzj
000841898 7001_ $$0P:(DE-Juel1)164315$$aLaptev, A.$$b4$$ufzj
000841898 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b5$$ufzj
000841898 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b6$$ufzj
000841898 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2017.10.055$$gVol. 144, p. 116 - 128$$p116 - 128$$tActa materialia$$v144$$x1359-6454$$y2018
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/1-s2.0-S135964541730914X-main.pdf$$yRestricted
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/Manuscript-final.pdf$$yOpenAccess
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/Manuscript-final.gif?subformat=icon$$xicon$$yOpenAccess
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/Manuscript-final.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/Manuscript-final.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/Manuscript-final.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/Manuscript-final.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/1-s2.0-S135964541730914X-main.gif?subformat=icon$$xicon$$yRestricted
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/1-s2.0-S135964541730914X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/1-s2.0-S135964541730914X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/1-s2.0-S135964541730914X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841898 8564_ $$uhttps://juser.fz-juelich.de/record/841898/files/1-s2.0-S135964541730914X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841898 909CO $$ooai:juser.fz-juelich.de:841898$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000841898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b0$$kFZJ
000841898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172628$$aForschungszentrum Jülich$$b2$$kFZJ
000841898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171464$$aForschungszentrum Jülich$$b3$$kFZJ
000841898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164315$$aForschungszentrum Jülich$$b4$$kFZJ
000841898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b5$$kFZJ
000841898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000841898 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000841898 9141_ $$y2018
000841898 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841898 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841898 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841898 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2015
000841898 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2015
000841898 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841898 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841898 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841898 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841898 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841898 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841898 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841898 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841898 920__ $$lyes
000841898 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000841898 9801_ $$aFullTexts
000841898 980__ $$ajournal
000841898 980__ $$aVDB
000841898 980__ $$aUNRESTRICTED
000841898 980__ $$aI:(DE-Juel1)IEK-1-20101013
000841898 981__ $$aI:(DE-Juel1)IMD-2-20101013