000841906 001__ 841906
000841906 005__ 20250317091730.0
000841906 0247_ $$2doi$$a10.5194/gmd-2017-242
000841906 0247_ $$2ISSN$$a1991-9611
000841906 0247_ $$2ISSN$$a1991-962X
000841906 0247_ $$2Handle$$a2128/16705
000841906 0247_ $$2altmetric$$aaltmetric:28003280
000841906 037__ $$aFZJ-2018-00203
000841906 082__ $$a910
000841906 1001_ $$0P:(DE-Juel1)168536$$aSharples, Wendy$$b0$$eCorresponding author$$ufzj
000841906 245__ $$aBest practice regarding the three P's: profiling, portability and provenance when running HPC geoscientific applications
000841906 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2017
000841906 3367_ $$2DRIVER$$aarticle
000841906 3367_ $$2DataCite$$aOutput Types/Journal article
000841906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662443499_12760
000841906 3367_ $$2BibTeX$$aARTICLE
000841906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841906 3367_ $$00$$2EndNote$$aJournal Article
000841906 520__ $$aGeoscientific modeling is constantly evolving, with next generation geoscientific models and applications placing high demands on high performance computing (HPC) resources. These demands are being met by new developments in HPC architectures, software libraries, and infrastructures. New HPC developments require new programming paradigms leading to substantial investment in model porting, tuning, and refactoring of complicated legacy code in order to use these resources effectively. In addition to the challenge of new massively parallel HPC systems, reproducibility of simulation and analysis results is of great concern, as the next generation geoscientific models are based on complex model implementations and profiling, modeling and data processing workflows.Thus, in order to reduce both the duration and the cost of code migration, aid in the development of new models or model components, while ensuring reproducibility and sustainability over the complete data life cycle, a streamlined approach to profiling, porting, and provenance tracking is necessary.We propose a run control framework (RCF) integrated with a workflow engine which encompasses all stages of the modeling chain: 1. preprocess input, 2. compilation of code (including code instrumentation with performance analysis tools), 3. simulation run, 4. postprocess and analysis, to address these issues.Within this RCF, the workflow engine is used to create and manage benchmark or simulation parameter combinations and performs the documentation and data organization for reproducibility. This approach automates the process of porting and tuning, profiling, testing, and running a geoscientific model. We show that in using our run control framework, testing, benchmarking, profiling, and running models is less time consuming and more robust, resulting in more efficient use of HPC resources, more strategic code development, and enhanced data integrity and reproducibility.
000841906 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000841906 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000841906 536__ $$0G:(EU-Grant)676629$$aEoCoE - Energy oriented Centre of Excellence for computer applications (676629)$$c676629$$fH2020-EINFRA-2015-1$$x2
000841906 536__ $$0G:(EU-Grant)676553$$aPOP - Performance Optimisation and Productivity (676553)$$c676553$$fH2020-EINFRA-2015-1$$x3
000841906 536__ $$0G:(DE-Juel1)jzam11_20191101$$aScalable Performance Analysis of Large-Scale Parallel Applications (jzam11_20191101)$$cjzam11_20191101$$fScalable Performance Analysis of Large-Scale Parallel Applications$$x4
000841906 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x5
000841906 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x6
000841906 588__ $$aDataset connected to CrossRef
000841906 7001_ $$0P:(DE-Juel1)144419$$aZhukov, Ilya$$b1$$ufzj
000841906 7001_ $$0P:(DE-Juel1)132112$$aGeimer, Markus$$b2$$ufzj
000841906 7001_ $$0P:(DE-Juel1)156253$$aGörgen, Klaus$$b3
000841906 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b4$$ufzj
000841906 7001_ $$0P:(DE-Juel1)7757$$aLührs, Sebastian$$b5
000841906 7001_ $$0P:(DE-Juel1)138707$$aBreuer, Thomas$$b6$$ufzj
000841906 7001_ $$0P:(DE-Juel1)169794$$aNaz, Bibi$$b7$$ufzj
000841906 7001_ $$0P:(DE-Juel1)168310$$aKulkarni, Ketan$$b8$$ufzj
000841906 7001_ $$0P:(DE-Juel1)172089$$aBrdar, Slavko$$b9$$ufzj
000841906 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmd-2017-242$$gp. 1 - 39$$p1 - 39$$tGeoscientific model development discussions$$v242$$x1991-9611$$y2017
000841906 8564_ $$uhttps://juser.fz-juelich.de/record/841906/files/gmd-2017-242.pdf$$yOpenAccess
000841906 8564_ $$uhttps://juser.fz-juelich.de/record/841906/files/gmd-2017-242.gif?subformat=icon$$xicon$$yOpenAccess
000841906 8564_ $$uhttps://juser.fz-juelich.de/record/841906/files/gmd-2017-242.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841906 8564_ $$uhttps://juser.fz-juelich.de/record/841906/files/gmd-2017-242.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841906 8564_ $$uhttps://juser.fz-juelich.de/record/841906/files/gmd-2017-242.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841906 8564_ $$uhttps://juser.fz-juelich.de/record/841906/files/gmd-2017-242.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841906 909CO $$ooai:juser.fz-juelich.de:841906$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168536$$aForschungszentrum Jülich$$b0$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144419$$aForschungszentrum Jülich$$b1$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132112$$aForschungszentrum Jülich$$b2$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156253$$aForschungszentrum Jülich$$b3$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b4$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7757$$aForschungszentrum Jülich$$b5$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138707$$aForschungszentrum Jülich$$b6$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169794$$aForschungszentrum Jülich$$b7$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168310$$aForschungszentrum Jülich$$b8$$kFZJ
000841906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172089$$aForschungszentrum Jülich$$b9$$kFZJ
000841906 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000841906 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000841906 9141_ $$y2017
000841906 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841906 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841906 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841906 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841906 920__ $$lyes
000841906 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000841906 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000841906 980__ $$ajournal
000841906 980__ $$aVDB
000841906 980__ $$aI:(DE-Juel1)IBG-3-20101118
000841906 980__ $$aI:(DE-Juel1)JSC-20090406
000841906 980__ $$aUNRESTRICTED
000841906 9801_ $$aFullTexts