001     841906
005     20250317091730.0
024 7 _ |a 10.5194/gmd-2017-242
|2 doi
024 7 _ |a 1991-9611
|2 ISSN
024 7 _ |a 1991-962X
|2 ISSN
024 7 _ |a 2128/16705
|2 Handle
024 7 _ |a altmetric:28003280
|2 altmetric
037 _ _ |a FZJ-2018-00203
082 _ _ |a 910
100 1 _ |a Sharples, Wendy
|0 P:(DE-Juel1)168536
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Best practice regarding the three P's: profiling, portability and provenance when running HPC geoscientific applications
260 _ _ |a Katlenburg-Lindau
|c 2017
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1662443499_12760
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Geoscientific modeling is constantly evolving, with next generation geoscientific models and applications placing high demands on high performance computing (HPC) resources. These demands are being met by new developments in HPC architectures, software libraries, and infrastructures. New HPC developments require new programming paradigms leading to substantial investment in model porting, tuning, and refactoring of complicated legacy code in order to use these resources effectively. In addition to the challenge of new massively parallel HPC systems, reproducibility of simulation and analysis results is of great concern, as the next generation geoscientific models are based on complex model implementations and profiling, modeling and data processing workflows.Thus, in order to reduce both the duration and the cost of code migration, aid in the development of new models or model components, while ensuring reproducibility and sustainability over the complete data life cycle, a streamlined approach to profiling, porting, and provenance tracking is necessary.We propose a run control framework (RCF) integrated with a workflow engine which encompasses all stages of the modeling chain: 1. preprocess input, 2. compilation of code (including code instrumentation with performance analysis tools), 3. simulation run, 4. postprocess and analysis, to address these issues.Within this RCF, the workflow engine is used to create and manage benchmark or simulation parameter combinations and performs the documentation and data organization for reproducibility. This approach automates the process of porting and tuning, profiling, testing, and running a geoscientific model. We show that in using our run control framework, testing, benchmarking, profiling, and running models is less time consuming and more robust, resulting in more efficient use of HPC resources, more strategic code development, and enhanced data integrity and reproducibility.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
536 _ _ |a EoCoE - Energy oriented Centre of Excellence for computer applications (676629)
|0 G:(EU-Grant)676629
|c 676629
|f H2020-EINFRA-2015-1
|x 2
536 _ _ |a POP - Performance Optimisation and Productivity (676553)
|0 G:(EU-Grant)676553
|c 676553
|f H2020-EINFRA-2015-1
|x 3
536 _ _ |a Scalable Performance Analysis of Large-Scale Parallel Applications (jzam11_20191101)
|0 G:(DE-Juel1)jzam11_20191101
|c jzam11_20191101
|f Scalable Performance Analysis of Large-Scale Parallel Applications
|x 4
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 5
536 _ _ |0 G:(DE-Juel-1)ATMLAO
|a ATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)
|c ATMLAO
|x 6
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhukov, Ilya
|0 P:(DE-Juel1)144419
|b 1
|u fzj
700 1 _ |a Geimer, Markus
|0 P:(DE-Juel1)132112
|b 2
|u fzj
700 1 _ |a Görgen, Klaus
|0 P:(DE-Juel1)156253
|b 3
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 4
|u fzj
700 1 _ |a Lührs, Sebastian
|0 P:(DE-Juel1)7757
|b 5
700 1 _ |a Breuer, Thomas
|0 P:(DE-Juel1)138707
|b 6
|u fzj
700 1 _ |a Naz, Bibi
|0 P:(DE-Juel1)169794
|b 7
|u fzj
700 1 _ |a Kulkarni, Ketan
|0 P:(DE-Juel1)168310
|b 8
|u fzj
700 1 _ |a Brdar, Slavko
|0 P:(DE-Juel1)172089
|b 9
|u fzj
773 _ _ |a 10.5194/gmd-2017-242
|g p. 1 - 39
|0 PERI:(DE-600)2456729-2
|p 1 - 39
|t Geoscientific model development discussions
|v 242
|y 2017
|x 1991-9611
856 4 _ |u https://juser.fz-juelich.de/record/841906/files/gmd-2017-242.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841906/files/gmd-2017-242.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841906/files/gmd-2017-242.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841906/files/gmd-2017-242.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841906/files/gmd-2017-242.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841906/files/gmd-2017-242.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:841906
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168536
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156253
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)7757
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)168310
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172089
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 1
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21