000841934 001__ 841934
000841934 005__ 20250129092454.0
000841934 0247_ $$2doi$$a10.3997/1873-0604.2017045
000841934 0247_ $$2WOS$$aWOS:000419112000010
000841934 0247_ $$2Handle$$a2128/24754
000841934 037__ $$aFZJ-2018-00221
000841934 082__ $$a550
000841934 1001_ $$0P:(DE-Juel1)161264$$aGao, Zhan$$b0$$eCorresponding author$$ufzj
000841934 245__ $$aSpectral induced polarization for the characterisation of biochar in sand
000841934 260__ $$aHouten$$bEAGE$$c2017
000841934 3367_ $$2DRIVER$$aarticle
000841934 3367_ $$2DataCite$$aOutput Types/Journal article
000841934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516005082_30488
000841934 3367_ $$2BibTeX$$aARTICLE
000841934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841934 3367_ $$00$$2EndNote$$aJournal Article
000841934 520__ $$aThe use of biochar as a soil amendment attracts increasing research interest. However, the lack of methods to detect and monitor biochar in situ limits the validation of the field-scale application of biochar. Spectral induced polarization is a potential tool to characterise biochar in soil. The aim of this study is to investigate the sensitivity of spectral induced polarization to biochar in sand and to understand how the physicochemical properties of both the biochar and the surrounding matrix influence the spectral induced polarization response. To this end, spectral induced polarization measurements were conducted on four types of biochar with different mass fractions disseminated in saturated sand as a host media with changing electrical conductivity. In addition, it was investigated how the spectral induced polarization response depends on the particle size of biochar. The measured SIP data were interpreted by Debye decomposition to obtain values for the peak relaxation time, τpeak; total chargeability, M; and normalised total chargeability, Mn. Spectral induced polarization showed a clear and specifically differentiated response to the presence of all four types of biochars. M was found to be proportional to the mass fraction of biochars, although relationships varied for each type of biochars. τpeak of biochars increased with increasing particle size. Increased electrolyte concentration enhanced Mn for all biochars, although again, the specific response was different for each biochar. In addition, higher electrolyte concentrations decreased τpeak for biochars derived from wood through pyrolysis but did not affect τpeak of biochar derived from miscanthus through hydrothermal carbonisation. It was concluded that the spectral induced polarization response of pyrolytic biochars resembled that of conductors or semiconductors, whereas the spectral induced polarization response of hydrothermal carbonisation biochar more closely resembled that of clay. Overall, the findings in this study suggest that spectral induced polarization is a promising method for the detection and characterisation of biochar in soil.
000841934 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000841934 7001_ $$0P:(DE-Juel1)129465$$aHaegel, Franz-Hubert$$b1$$ufzj
000841934 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2$$ufzj
000841934 7001_ $$0P:(DE-Juel1)129450$$aEsser, Odilia$$b3$$ufzj
000841934 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b4$$ufzj
000841934 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000841934 773__ $$0PERI:(DE-600)2247665-9$$a10.3997/1873-0604.2017045$$n6$$p645-656$$tNear surface geophysics$$v15$$x1569-4445$$y2017
000841934 8564_ $$uhttps://juser.fz-juelich.de/record/841934/files/Near-Surf-Geophys-2017-15-6-645-656-Gao-et-al-post-print-corrected.pdf$$yPublished on 2017-10-01. Available in OpenAccess from 2018-10-01.
000841934 8564_ $$uhttps://juser.fz-juelich.de/record/841934/files/Near-Surf-Geophys-2017-15-6-645-656-Gao-et-al-post-print-corrected.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-10-01. Available in OpenAccess from 2018-10-01.
000841934 909CO $$ooai:juser.fz-juelich.de:841934$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000841934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161264$$aForschungszentrum Jülich$$b0$$kFZJ
000841934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129465$$aForschungszentrum Jülich$$b1$$kFZJ
000841934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b2$$kFZJ
000841934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129450$$aForschungszentrum Jülich$$b3$$kFZJ
000841934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich$$b4$$kFZJ
000841934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000841934 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000841934 9141_ $$y2017
000841934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841934 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000841934 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEAR SURF GEOPHYS : 2015
000841934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841934 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841934 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841934 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841934 920__ $$lyes
000841934 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000841934 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000841934 9801_ $$aFullTexts
000841934 980__ $$ajournal
000841934 980__ $$aVDB
000841934 980__ $$aUNRESTRICTED
000841934 980__ $$aI:(DE-Juel1)IBG-3-20101118
000841934 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000841934 981__ $$aI:(DE-Juel1)PGI-4-20110106