001     841974
005     20210129232130.0
024 7 _ |a 10.1093/brain/awx356
|2 doi
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a WOS:000426813600032
|2 WOS
024 7 _ |a 2128/21495
|2 Handle
024 7 _ |a altmetric:31269974
|2 altmetric
024 7 _ |a pmid:29309600
|2 pmid
037 _ _ |a FZJ-2018-00261
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Richter, Nils
|0 0000-0002-3377-5684
|b 0
|e Corresponding author
245 _ _ |a Effect of cholinergic treatment depends on cholinergic integrity in early Alzheimer’s disease
260 _ _ |a Oxford
|c 2018
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521462957_8744
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In early Alzheimer’s disease, which initially presents with progressive loss of short-term memory, neurodegeneration especially affects cholinergic neurons of the basal forebrain. Pharmacotherapy of Alzheimer’s disease therefore often targets the cholinergic system. In contrast, cholinergic pharmacotherapy of mild cognitive impairment is debated since its efficacy to date remains controversial. We here investigated the relationship between cholinergic treatment effects and the integrity of the cholinergic system in mild cognitive impairment due to Alzheimer’s disease. Fourteen patients with high likelihood of mild cognitive impairment due to Alzheimer’s disease and 16 age-matched cognitively normal adults performed an episodic memory task during functional magnetic resonance imaging under three conditions: (i) without pharmacotherapy; (ii) with placebo; and (iii) with a single dose of rivastigmine (3 mg). Cortical acetylcholinesterase activity was measured using PET with the tracer 11C-N-methyl-4-piperidyl acetate (MP4A). Cortical acetylcholinesterase activity was significantly decreased in patients relative to controls, especially in the lateral temporal lobes. Without pharmacotherapy, mild cognitive impairment was associated with less memory-related neural activation in the fusiform gyrus and impaired deactivation in the posterior cingulate cortex, relative to controls. These differences were attenuated under cholinergic stimulation with rivastigmine: patients showed increased neural activation in the right fusiform gyrus but enhanced deactivation of the posterior cingulate cortex under rivastigmine, compared to placebo. Conversely, controls showed reduced activation of the fusiform gyrus and reduced deactivation of the posterior cingulate under rivastigmine, compared to placebo. In both groups, the change in neural activation in response to rivastigmine was negatively associated with local acetylcholinesterase activity. At the behavioural level, an analysis of covariance revealed a significant group × treatment interaction in episodic memory performance when accounting for hippocampal grey matter atrophy and function. Our results indicate that rivastigmine differentially affects memory-related neural activity in patients with mild cognitive impairment and cognitively normal, age-matched adults, depending on acetylcholinesterase activity as a marker for the integrity of the cortical cholinergic system. Furthermore, hippocampal integrity showed an independent association with the response of memory performance to acetylcholinesterase inhibition.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beckers, Nora
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Onur, Özgür
|0 P:(DE-Juel1)131736
|b 2
700 1 _ |a Dietlein, Markus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tittgemeyer, Marc
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kracht, Lutz
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 6
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 7
700 1 _ |a Kukolja, Juraj
|0 P:(DE-Juel1)131730
|b 8
773 _ _ |a 10.1093/brain/awx356
|0 PERI:(DE-600)1474117-9
|n 3
|p 903–915
|t Brain
|v 141
|y 2018
|x 1460-2156
856 4 _ |u https://juser.fz-juelich.de/record/841974/files/awx356.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/841974/files/awx356.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/841974/files/awx356.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/841974/files/awx356.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/841974/files/awx356.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/841974/files/awx356.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841974/files/Richter_2018_Post%20Print_BRAIN_Effect%20of%20cholinergic%20treatment%20depends%20on%20cholinergic%20integrity%20in%20early%20Alzheimers%20disease.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841974/files/Richter_2018_Post%20Print_BRAIN_Effect%20of%20cholinergic%20treatment%20depends%20on%20cholinergic%20integrity%20in%20early%20Alzheimers%20disease.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841974
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0000-0002-3377-5684
910 1 _ |a INM_3
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-3377-5684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131730
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21