000841976 001__ 841976
000841976 005__ 20210129232131.0
000841976 0247_ $$2doi$$a10.1016/j.neuroimage.2017.11.047
000841976 0247_ $$2ISSN$$a1053-8119
000841976 0247_ $$2ISSN$$a1095-9572
000841976 0247_ $$2pmid$$apmid:29175612
000841976 0247_ $$2WOS$$aWOS:000427529200039
000841976 0247_ $$2altmetric$$aaltmetric:29307720
000841976 037__ $$aFZJ-2018-00263
000841976 082__ $$a610
000841976 1001_ $$0P:(DE-HGF)0$$aEl-Sourani, Nadiya$$b0$$eCorresponding author
000841976 245__ $$aMaking sense of objects lying around: How contextual objects shape brain activity during action observation
000841976 260__ $$aOrlando, Fla.$$bAcademic Press$$c2018
000841976 3367_ $$2DRIVER$$aarticle
000841976 3367_ $$2DataCite$$aOutput Types/Journal article
000841976 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515509495_19494
000841976 3367_ $$2BibTeX$$aARTICLE
000841976 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841976 3367_ $$00$$2EndNote$$aJournal Article
000841976 520__ $$aAction recognition involves not only the readout of body movements and involved objects but also the integration of contextual information, e.g. the environment in which an action takes place. Notably, inferring superordinate goals and generating predictions about forthcoming action steps should benefit from screening the actor's immediate environment, in particular objects located in the actor's peripersonal space and thus potentially used in following action steps. Critically, if such contextual objects (COs) afford actions that are semantically related to the observed action, they may trigger or facilitate the inference of goals and the prediction of following actions.This fMRI study investigated the neural mechanisms underlying the integration of COs in semantic and spatial relation to observed actions. Specifically, we tested the hypothesis that the inferior frontal gyrus (IFG) subserves this integration. Participants observed action videos in which COs and observed actions had common overarching goals or not (goal affinity) and varied in their location relative to the actor.High goal affinity increased bilateral activity in action observation network nodes, i.e. the occipitotemporal cortex and the intraparietal sulcus, but also in the precuneus and middle frontal gyri. This finding suggests that the semantic relation between COs and actions is considered during action observation and triggers (rather than facilitates) processes beyond those usually involved in action observation. Moreover, COs with high goal affinity located close to the actor's dominant hand additionally engaged bilateral IFG, corroborating the view that IFG is critically involved in the integration of action steps under a common overarching goal.
000841976 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000841976 588__ $$aDataset connected to CrossRef
000841976 7001_ $$0P:(DE-HGF)0$$aWurm, Moritz F.$$b1
000841976 7001_ $$0P:(DE-Juel1)169149$$aTrempler, Ima$$b2
000841976 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b3
000841976 7001_ $$0P:(DE-HGF)0$$aSchubotz, Ricarda I.$$b4
000841976 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2017.11.047$$gVol. 167, p. 429 - 437$$p429 - 437$$tNeuroImage$$v167$$x1053-8119$$y2018
000841976 8564_ $$uhttps://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.pdf$$yRestricted
000841976 8564_ $$uhttps://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.gif?subformat=icon$$xicon$$yRestricted
000841976 8564_ $$uhttps://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841976 8564_ $$uhttps://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841976 8564_ $$uhttps://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841976 8564_ $$uhttps://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841976 909CO $$ooai:juser.fz-juelich.de:841976$$pVDB
000841976 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000841976 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ
000841976 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000841976 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b4
000841976 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000841976 9141_ $$y2018
000841976 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841976 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841976 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841976 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841976 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000841976 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841976 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841976 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841976 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841976 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841976 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841976 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000841976 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000841976 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000841976 920__ $$lyes
000841976 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000841976 980__ $$ajournal
000841976 980__ $$aVDB
000841976 980__ $$aI:(DE-Juel1)INM-3-20090406
000841976 980__ $$aUNRESTRICTED