001     841976
005     20210129232131.0
024 7 _ |a 10.1016/j.neuroimage.2017.11.047
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a pmid:29175612
|2 pmid
024 7 _ |a WOS:000427529200039
|2 WOS
024 7 _ |a altmetric:29307720
|2 altmetric
037 _ _ |a FZJ-2018-00263
082 _ _ |a 610
100 1 _ |a El-Sourani, Nadiya
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Making sense of objects lying around: How contextual objects shape brain activity during action observation
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515509495_19494
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Action recognition involves not only the readout of body movements and involved objects but also the integration of contextual information, e.g. the environment in which an action takes place. Notably, inferring superordinate goals and generating predictions about forthcoming action steps should benefit from screening the actor's immediate environment, in particular objects located in the actor's peripersonal space and thus potentially used in following action steps. Critically, if such contextual objects (COs) afford actions that are semantically related to the observed action, they may trigger or facilitate the inference of goals and the prediction of following actions.This fMRI study investigated the neural mechanisms underlying the integration of COs in semantic and spatial relation to observed actions. Specifically, we tested the hypothesis that the inferior frontal gyrus (IFG) subserves this integration. Participants observed action videos in which COs and observed actions had common overarching goals or not (goal affinity) and varied in their location relative to the actor.High goal affinity increased bilateral activity in action observation network nodes, i.e. the occipitotemporal cortex and the intraparietal sulcus, but also in the precuneus and middle frontal gyri. This finding suggests that the semantic relation between COs and actions is considered during action observation and triggers (rather than facilitates) processes beyond those usually involved in action observation. Moreover, COs with high goal affinity located close to the actor's dominant hand additionally engaged bilateral IFG, corroborating the view that IFG is critically involved in the integration of action steps under a common overarching goal.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wurm, Moritz F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Trempler, Ima
|0 P:(DE-Juel1)169149
|b 2
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 3
700 1 _ |a Schubotz, Ricarda I.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.neuroimage.2017.11.047
|g Vol. 167, p. 429 - 437
|0 PERI:(DE-600)1471418-8
|p 429 - 437
|t NeuroImage
|v 167
|y 2018
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841976/files/1-s2.0-S1053811917309916-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841976
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21