001     841985
005     20210129232134.0
024 7 _ |a 10.1128/JVI.01697-17
|2 doi
024 7 _ |a 0022-538X
|2 ISSN
024 7 _ |a 1098-5514
|2 ISSN
024 7 _ |a 2128/17713
|2 Handle
024 7 _ |a pmid:29263270
|2 pmid
024 7 _ |a WOS:000427447100012
|2 WOS
024 7 _ |a altmetric:30715741
|2 altmetric
037 _ _ |a FZJ-2018-00272
082 _ _ |a 570
100 1 _ |a Gu, Qinyong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Identification of a Conserved Interface of Human Immunodeficiency Virus Type 1 and Feline Immunodeficiency Virus Vifs with Cullin 5
260 _ _ |a Baltimore, Md.
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521206985_6672
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC3, A3) family of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids such as the domestic cat (Felis catus), the APOBEC3 (A3) genes encode for the A3Z2s, A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). FIV Vif protein interacts with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination complex to induce the degradation of feline A3s. However, the functional domains in FIV Vif for interaction with Cullin are poorly understood. Here, we found that the expression of dominant-negative CUL5 prevented the degradation of feline A3s by FIV Vif, while dominant-negative CUL2 had no influence on the degradation of A3. In co-immunoprecipitation assays, FIV Vif bound to CUL5 but not CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from position 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding of Vif to CUL5. By focusing on a potential zinc-binding motif (K175— C161—C184—C187) of FIV Vif, we found a conserved hydrophobic region (174IR175) that is important for CUL5 interaction. Mutating this region also impaired the FIV Vif-induced degradation of feline A3s. Based on a structural model of the FIV Vif/CUL5 interaction, residues 52LW53 in CUL5 were identified as mediating the binding to FIV Vif. By comparing our results to the HIV-1 Vif/CUL5 interaction surface (120IR121, a hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 interaction surface in the diverse HIV-1 and FIV Vif is evolutionarily conserved indicating a strong structural constraint. However, the FIV Vif/CUL5 interaction is zinc-independent, which contrasts with the zinc-dependence of HIV-1 Vif.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 1
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Zeli
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gertzen, Christoph G. W.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Häussinger, Dieter
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 4
700 1 _ |a Münk, Carsten
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1128/JVI.01697-17
|g p. JVI.01697-17 -
|0 PERI:(DE-600)1495529-5
|n 6
|p e01697-17
|t Journal of virology
|v 92
|y 2018
|x 1098-5514
856 4 _ |y Published on 2017-12-20. Available in OpenAccess from 2018-06-20.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2017-Postprint.pdf
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2018-Gu-.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2018-Gu-.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2018-Gu-.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2018-Gu-.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2018-Gu-.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2018-Gu-.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2017-Postprint.gif?subformat=icon
|x icon
|y Published on 2017-12-20. Available in OpenAccess from 2018-06-20.
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2017-Postprint.jpg?subformat=icon-1440
|x icon-1440
|y Published on 2017-12-20. Available in OpenAccess from 2018-06-20.
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2017-Postprint.jpg?subformat=icon-180
|x icon-180
|y Published on 2017-12-20. Available in OpenAccess from 2018-06-20.
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2017-Postprint.jpg?subformat=icon-640
|x icon-640
|y Published on 2017-12-20. Available in OpenAccess from 2018-06-20.
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/841985/files/J.%20Virol.-2017-Postprint.pdf?subformat=pdfa
|x pdfa
|y Published on 2017-12-20. Available in OpenAccess from 2018-06-20.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:841985
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J VIROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21