000842029 001__ 842029
000842029 005__ 20210129232149.0
000842029 0247_ $$2doi$$a10.1137/16M110695X
000842029 0247_ $$2ISSN$$a0368-4245
000842029 0247_ $$2ISSN$$a1095-712X
000842029 0247_ $$2Handle$$a2128/17394
000842029 0247_ $$2WOS$$aWOS:000426747800004
000842029 037__ $$aFZJ-2018-00313
000842029 082__ $$a510
000842029 1001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b0$$eCorresponding author
000842029 245__ $$aFrom Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models
000842029 260__ $$aPhiladelphia, Pa.$$bSoc.$$c2018
000842029 3367_ $$2DRIVER$$aarticle
000842029 3367_ $$2DataCite$$aOutput Types/Journal article
000842029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516008132_30485
000842029 3367_ $$2BibTeX$$aARTICLE
000842029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842029 3367_ $$00$$2EndNote$$aJournal Article
000842029 520__ $$aIn this work, we derive first order continuum traffic flow models from a microscopic delayed follow-the-leader model. These are applicable in the context of vehicular traffic flow as well as pedestrian traffic flow. The microscopic model is based on an optimal velocity function and a reaction time parameter. The corresponding macroscopic formulations in Eulerian or Lagrangian coordinates result in first order convection-diffusion equations. More precisely, the convection is described by the optimal velocity while the diffusion term depends on the reaction time. A linear stability analysis for homogeneous solutions of both continuous and discrete models is provided. The conditions match those of the car-following model for specific values of the space discretization. The behavior of the novel model is illustrated thanks to numerical simulations. Transitions to collision-free self-sustained stop-and-go dynamics are obtained if the reaction time is sufficiently large. The results show that the dynamics of the microscopic model can be well captured by the macroscopic equations. For nonzero reaction times we observe a scattered fundamental diagram. The scattering width is compared to real pedestrian and road traffic data.
000842029 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842029 588__ $$aDataset connected to CrossRef
000842029 7001_ $$0P:(DE-HGF)0$$aCosteseque, Guillaume$$b1
000842029 7001_ $$0P:(DE-HGF)0$$aHerty, Michael$$b2
000842029 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b3$$ufzj
000842029 773__ $$0PERI:(DE-600)1468266-7$$a10.1137/16M110695X$$gVol. 78, no. 1, p. 63 - 79$$n1$$p63 - 79$$tSIAM journal on applied mathematics$$v78$$x0036-1399$$y2018
000842029 8564_ $$uhttps://juser.fz-juelich.de/record/842029/files/M110695.pdf$$yOpenAccess
000842029 8564_ $$uhttps://juser.fz-juelich.de/record/842029/files/M110695.gif?subformat=icon$$xicon$$yOpenAccess
000842029 8564_ $$uhttps://juser.fz-juelich.de/record/842029/files/M110695.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842029 8564_ $$uhttps://juser.fz-juelich.de/record/842029/files/M110695.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000842029 8564_ $$uhttps://juser.fz-juelich.de/record/842029/files/M110695.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842029 909CO $$ooai:juser.fz-juelich.de:842029$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159135$$aForschungszentrum Jülich$$b0$$kFZJ
000842029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b3$$kFZJ
000842029 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842029 9141_ $$y2018
000842029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842029 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J APPL MATH : 2015
000842029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842029 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842029 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842029 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842029 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842029 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842029 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842029 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000842029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842029 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842029 980__ $$ajournal
000842029 980__ $$aVDB
000842029 980__ $$aUNRESTRICTED
000842029 980__ $$aI:(DE-Juel1)JSC-20090406
000842029 9801_ $$aFullTexts