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FROM TRAFFIC AND PEDESTRIAN FOLLOW-THE-LEADER

MODELS WITH REACTION TIME TO FIRST ORDER

CONVECTION-DIFFUSION FLOW MODELS∗
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ARMIN SEYFRIED†

Abstract. In this work, we derive first order continuum traffic flow models from a microscopic
delayed follow-the-leader model. These are applicable in the context of vehicular traffic flow as well
as pedestrian traffic flow. The microscopic model is based on an optimal velocity function and a
reaction time parameter. The corresponding macroscopic formulations in Eulerian or Lagrangian
coordinates result in first order convection-diffusion equations. More precisely, the convection is
described by the optimal velocity while the diffusion term depends on the reaction time. A linear
stability analysis for homogeneous solutions of both continuous and discrete models is provided. The
conditions match those of the car-following model for specific values of the space discretization. The
behavior of the novel model is illustrated thanks to numerical simulations. Transitions to collision-
free self-sustained stop-and-go dynamics are obtained if the reaction time is sufficiently large. The
results show that the dynamics of the microscopic model can be well captured by the macroscopic
equations. For nonzero reaction times we observe a scattered fundamental diagram. The scattering
width is compared to real pedestrian and road traffic data.
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1. Introduction. Microscopic and macroscopic approaches for the purpose of
vehicular traffic flow modeling have often been developed separately in the engineering
community [44, 23, 5, 26]. Similar models can also be used in the description of
pedestrian dynamics [41, 11, 1]. Typically, microscopic models are based on the so-
called follow-the-leader strategy, and they are stated as (finite or infinite) systems
of ordinary differential equations (ODEs). They are generally based on speed or
acceleration functions which depend on distance spacing, speed, predecessor speed,
relative speed, and so on. One of the simplest approaches is a speed model solely
based on the spacing, first proposed by Pipes [39],

(1) ẋi(t) = W (∆xi(t)),

where ∆xi(t) = xi+1(t) − xi(t) denotes the spacing between the vehicle (i) and its
predecessor (i + 1) and W (·) stands for the equilibrium (or optimal) speed function
depending on the spacing. The microscopic models are discrete in the sense that the
vehicles or pedestrians i ∈ Z are individually considered. A macroscopic description
considers the flow of vehicles or pedestrians (in the following also referred to as agents)
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as a continuum in Eulerian or Lagrangian coordinates. For instance, in the most
classical Eulerian time-space framework, the main variables are the density, the flow,
and the mean speed. The simplest approach is the scalar hyperbolic equation of the
celebrated Lighthill–Whitham–Richards (LWR) model [30, 40]

(2) ∂tρ + ∂x(ρV (ρ)) = 0.

Here ρ is the density, and V (·) is the equilibrium speed function which is assumed to
depend only on the density. The flow Q(ρ) = ρV (ρ) is given by the product of the
density times the mean speed. The model is derived from the continuity equation for
which the flow is supposed in equilibrium. The microscopic and macroscopic models
(1) and (2) well reproduce shock-wave phenomena for Riemann problems. Yet such
models are not able to describe the observed transition to scattered flow/density
relation (the fundamental diagram) with hysteresis and self-sustained stop-and-go
phenomena (see [45, 25, 10], [24, Figure 1], [49, Figure 5], and Figures 8 and 9). This
is due to the fact that spatially homogeneous regimes are always in the equilibrium
solutions and are determined by the functions W (·) and V (·), respectively.

Therefore, the microscopic behavior is modified by introducing reaction and re-
laxation times. The simplest car-following model of this type may be the delayed
model by Newell [32]

(3) ẋi(t + τ) = W (∆xi(t)),

with τ the reaction time (if positive). Applying a Taylor expansion in the left-hand
side of the delayed speed model (3), we obtain the second order “optimal velocity
model” (OVM) introduced by Bando et al. in [4]. The OVM has limit-cycles in
stationary states, with self-sustained propagation of nonlinear stop-and-go waves, and
hysteresis curves in the fundamental flow/density diagram (see [35, 36]). Macroscopic
second-order models comprised of systems of hyperbolic equations are also able to
reproduce nonlinear stop-and-go waves and scattering of the fundamental diagram.
One of the first approaches is that of Payne and Whitham (PW) [38, 47]. The model
can be derived from the microscopic Newell model (3). The main drawback of this
model is that, as pointed out by Daganzo [14], the speed and density could yield
negative values and are not bounded. Note that this drawback is also observed with
follow-the-leader models like the OVM and is referred to as collision between the
vehicles (see, for instance, [15, 37] or [44, Chap. 15]). Aw and Rascle have corrected
this issue by replacing the space derivative of the “pressure” by a convective derivative
[3] (AR model). Today extensions of the AR model, such as the ARZ, GARZ, or
generalized models [22, 48, 6, 18, 42, 17], as well as two phase models coupled with
the LWR model [12, 20, 13, 7], are used to describe transition to congested traffic with
scattered fundamental diagrams and self-sustained nonlinear shock waves. A general
framework is the generic second order model (GSOM) family introduced in [29, 28].
Most of the approaches are a posteriori based on the continuous description.

In this article, we derive minimalist macroscopic traffic flow models of first order
from a microscopic speed model to describe stop-and-go wave phenomena and scatter-
ing of the fundamental diagram. The use of first order models allows us to ensure by
construction that the speed and density remain positive and bounded. The starting
point is an optimal velocity microscopic model of first order including a reaction time
parameter. We show in section 2 that the corresponding macroscopic model results
in a convection-diffusion equation. The macroscopic model is discretized using dis-
tinct Godunov and Euler-based schemes, and the linear stability conditions for the
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homogeneous solutions of these numerical schemes are provided in section 3. The
conditions match those of the car-following model for specific values of the spatial
discretization step. Simulations are carried out in section 4. Systems with different
initial conditions are numerically solved. Further, we compare the model to real data
of traffic as well as pedestrian flows.

2. Microscopic and macroscopic models.

2.1. The microscopic follow-the-leader model. The microscopic model we
use has been introduced in [43]. It is based on the Newell model (3). In the remainder
of the paper, we assume that W : s 7→ W (s) is Lipschitz continuous, nondecreasing,
and upper-bounded in order to get the well-posedness of (3) supplemented with initial
conditions xi(t = 0) = xi,0 for any i ∈ Z. We rewrite the equation as

(4) ẋi(t) = W (xi+1(t − τ) − xi(t − τ))

and apply a Taylor expansion in the argument of W . Neglecting higher-order terms
in τ , we obtain

(5) ẋi(t) = W
(

∆xi(t) − τ
[

W (∆xi+1(t)) − W (∆xi(t))
])

.

The model is a system of ODEs of first order with two predecessors in interaction.
It is calibrated by the delayed time τ ∈ R, that is, a reaction time if positive and
an anticipation time if negative, and the optimal speed function W (·). The function
W (·) is supposed to be bounded by V0 > 0, positive, and zero if the spacing is smaller
than ℓ, ℓ > 0 being the vehicle’s length or size of the pedestrian. Note that the model
admits a minimum principle, say ∆xi(t) ≥ ℓ for all i, t. Thus it is by construction
collision-free, and it has the same stability condition as the initial microscopic Newell
model (3) or as the OVM from [4]. This condition is for all s ∈ R

(6) |τ |W ′(s) < 1/2.

Note that the condition simply reduces to |τ | < T/2 if one considers the linear funda-
mental diagram W : s 7→ W (s) := max

{

0,min
{

1
T (s − ℓ), V0

}}

, with T > 0. When
unstable, the model transitions to states with collision-free self-sustained stop-and-go
dynamics; see [43].

2.2. Derivation of macroscopic models. In the following, we consider i =
1, . . . , N agents with periodic boundary conditions (i.e., the predecessor of the agent
N is the agent 1). The derivation of macroscopic models from microscopic models is
useful to fully understand the dynamics. In [2], Aw et al. established the connection
between a microscopic car-following model and the second order AR macroscopic
traffic flow model. The rigorous proof, based on a scaling limit where the time and
space linearly increase while the speed and the density remain constant, assumes
homogeneous conditions. We use here the same methodology considering the local
density ρi(t) around the vehicle or pedestrian (i) and at time t > 0, as the inverse of
the spacing

(7) ρi(t) :=
1

∆xi(t)
.

The density could also be normalized by multiplication with ℓ. Here, we prefer to
keep the unit of one over length as density to ease the comparison with the classical
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models. Then, the microscopic model reads

(8) ẋi(t) = W

(

1

ρi(t)
− τ

[

W

(

1

ρi+1(t)

)

− W

(

1

ρi(t)

)])

=: Ṽ (ρi+1(t), ρi(t))

for a velocity profile Ṽ . Then,

(9) ∂t
1

ρi(t)
= ∂t∆xi(t) = Ṽ (ρi+2(t), ρi+1(t)) − Ṽ (ρi+1(t), ρi(t)).

In [2] it has been observed that (9) is a semidiscretized version of a hyperbolic partial
differential equation in Lagrangian coordinates. This requires us to consider limits of
many vehicles or pedestrians N → ∞ and diminishing length ℓ → 0. We introduce
the continuous variable y ∈ R such that yi = i∆y as a counting variable for the
number of agents where ∆y is proportional to ℓ. By piecewise constant extension of

the given spacing, we construct a density ρ(t, y) such that 1
ρi(t)

= 1
∆y

∫ yi+
∆y
2

yi−
∆y
2

1
ρ(t,z)dz.

The quantity 1
ρi(t)

is the volume average over a cell of length ∆y centered at yi. The

right-hand side of (9) describes the flux across the cell boundaries. Introduce V : k 7→
V (k) = W ( 1

k ) for any k > 0. Then, it follows that Ṽ (k1, k2) = V ( k2

1−k2τ [V (k1)−V (k2)]
)

for any (k1, k2) ∈ (0,+∞)2 satisfying V (k1) 6= V (k2) + 1
τk2

. As for OVM, W is
nondecreasing; therefore, we observe that V is nonincreasing on (0,+∞). We obtain
from (9)

(10) ∂t
1

ρi(t)
−

∆y

∆y

[

V

(

ρi+1

1 − τρi+1Zi+1

)

− V

(

ρi

1 − τρiZi

)]

= 0,

where Zi := V (ρi+1) − V (ρi). Provided that −V is increasing and ρ(t, y) is piecewise
constant on each cell, the reconstruction at the cell interface yi± 1

2
is given by cell

averages, i.e., 1
ρ(t,y

i+ 1
2
) = 1

ρi+1(t)
. Next, we rescale time t → t∆y and also reaction

time τ → τ∆y to obtain

(11) ∂t
1

ρi(t)
−

1

∆y

[

V

(

ρi+1

1 − τρi+1
Zi+1

∆y

)

− V

(

ρi

1 − τρi
Zi

∆y

)]

= 0.

Hence, we observe that in the rescaled time and in the limit ∆y → 0 the microscopic
model is an upwind discretization of the following macroscopic equation:

(12) ∂t
1

ρ
− ∂yV

(

ρ

1 − τρ∂yV (ρ)

)

= 0.

The upwind or Godunov scheme is the most mathematically reasonable discretization
provided τ is sufficiently small due to the decreasing behavior of V for suitable OVM
functions W . Up to second order in τ we approximate (12) by Taylor expansion and
obtain a convection-diffusion model such as

(13) ∂t
1

ρ
− ∂yV (ρ) = τ∂y

(

(ρV ′(ρ))2∂yρ
)

.

The relation between the density in Lagrangian coordinates and Eulerian coordi-
nates is given by the coordinate transformation (t, y) → (t, x) where y =

∫ x

−∞
ρ(t, x)dx.
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Note that y counts the number of vehicles/pedestrians up to position x in Eulerian
coordinates. In the Eulerian coordinates (t, x), the macroscopic model (12) reads

(14) ∂tρ + ∂x

(

ρV

(

ρ

1 − τ∂xV (ρ)

))

= 0.

The model could be seen as an extension of the LWR model (2) with a modified speed-
density relationship ρ 7→ V (ρ/(1 − τ∂xV (ρ))). Such a family of models is related to
fictitious density nonlinear diffusion models in the literature [8]. For illustrating the
behavior of this modified speed-density mapping, we set I := τ∂xV (ρ)), and we define
V : (ρ, I) 7→ V (ρ/(1 − I)). The fundamental diagrams obtained for a constant term
I ∈ {−0.3, 0, 0.3} and for a speed function V : ρ 7→ max{0,min{2, 1/ρ − 1}} are
shown in Figure 1. Note that for constant (in space) densities ρ (and/or for τ = 0),
the additional term I vanishes, and we recover the classical LWR model.
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Fig. 1. Illustration for the fundamental diagram V : (ρ, I) 7→ V
(

ρ/(1 − I)
)

obtained
in the macroscopic model (14) with constant inhomogeneity I ∈ {−0.3, 0, 0.3} and V : ρ 7→
max{0, min{2, 1/ρ − 1}}.

A Taylor expansion up to second order in terms of τ for (14) yields

(15) ∂tρ + ∂x(ρV (ρ)) = −τ∂x

(

(ρV ′(ρ))2∂xρ
)

.

We also consider an initial condition

(16) ρ(t = 0, x) = ρ0(x) for any x ∈ R,

where ρ0 ∈ L1(R) ∩ BV(R). Equation (15) is a partial differential equation of the
first order in time and of the second in space. Oppositely to classical second order
approaches such as PW, AR, ARZ, and GSOM models [38, 47, 3, 48, 28] which are
hyperbolic, the model is parabolic and simply requires Neumann boundary conditions.

By defining D(ρ) :=
∫ x

−∞
−τ(ρV ′(ρ))2∂xρ dy, we obtain a diffusion equation

similar to the one considered in [9], say

(17) ∂tρ + ∂x(ρV (ρ)) = ∂2
xD(ρ).

One can verify that D(ρ0) is absolutely continuous on R and that ∂xD(ρ0) ∈ BV(R).
Note that the model simply describes a linear diffusion in the special case where
D(ρ) = −τρ and τ < 0.
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3. Linear stability analysis.

3.1. Linear stability analysis of the continuous macroscopic model. In
(15), the left-hand side is the LWR model with additional diffusion proportional to
the reaction time parameter τ and that can be either negative or positive. More pre-
cisely, the diffusion is negative in deceleration phases where the density gets higher
upstream, and it is positive in the opposite acceleration phases. This type of diffu-
sion seems to induce an instability of the homogeneous (constant) solutions and the
formation of oscillations (i.e., jam waves). The diffusion coefficient (ρV ′(ρ))2 depends
on the density and the fundamental diagram. In fluid dynamics the coefficient is a
characteristic for the flexibility of the random movement responsible for the diffusion.
In traffic flows, comparable diffusion-convection forms have been used in [31, 9]. We
refer the interested reader to [9] (and references therein) for a proof of existence and
uniqueness of the solution to (15)–(16). In the following we analyze the linear stability
of homogeneous solutions for the macroscopic model at equilibrium density ρe.

Proposition 1. The homogeneous configurations for which ρ(x, t) = ρe for all x
and t are linearly stable for the continuous traffic model (15) if and only if

(18) τ < 0.

Note that a negative τ refers to an anticipation time.

Proof. If ε(x, t) = ρ(x, t)− ρe is a perturbation to homogeneous solution ρe, then

(19) εt = F (ρe + ε, εx, εxx) = αε + βεx + γεxx + o(LC(ε, εx, εxx)),

with F (ρ, ρx, ρxx) = −∂x

(

ρV (ρ)− τ(ρV ′(ρ))2∂xρ
)

, α = ∂F
∂ρ (ρe, ρe, ρe) = 0, β = ∂F

∂ρx
=

−V (ρe) − ρeV
′(ρe), γ = ∂F

∂ρxx
= −τ(ρeV

′(ρe))
2. The solutions of the linear system

are the Ansatz ε = zeλt−ixl where λ ∈ C, x, l ∈ R. We get εt = λε, εx = −ilε,
and εxx = −l2ε. Therefore, the characteristic equation of the perturbed system (19)
is λl = τ(lρeV

′(ρe))
2 + il(V (ρe) + ρeV

′(ρe)). The homogeneous solutions are stable
when ε → 0, i.e., ℜ(λl) < 0 for all l > 0. This holds only if the diffusion is positive.
This is τ < 0.

Therefore, the macroscopic model is unstable as soon as the reaction time τ is
positive, which is the physically reasonable case. An explanation is that the Taylor
expansion of the original model in terms of τ does lead to a perturbed equation
with different properties. However, the discrete model does not have this stability
requirement. Therefore, we show below that for suitable discretization of the model
we recover stability.

3.2. Linear stability analysis for the discrete schemes. Discretizations of
the macroscopic models (12) and (13) in “Lagrangian” coordinates give the initial
microscopic model (5). Our purpose in this section is the discretization of the macro-
scopic models (14) and (15) in Eulerian coordinates. We denote dt and dx the time
and space discretization steps and use the Godunov scheme [21] for the discretization
of the density

(20) ρj(t + dt) = ρj(t) +
dt

dx

(

fj−1(t) − fj(t)
)

,

where fj denotes the flow at cell boundary and has to be determined. For this aim,
we introduce the demand and supply functions from the flow-density fundamental di-
agram Q : ρ 7→ Q(ρ) := ρV (ρ) as first proposed in [14, 27] and that read, respectively,

(21) ∆(ρ) := max
k≤ρ

Q(k) and Σ(ρ) := max
k≥ρ

Q(k),
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and we define the Godunov flux as G(x, y) := min{∆(x),Σ(y)}. We are now ready
to propose three different strategies to compute the boundary flows fj . The first two
methods discretize the linearized model (15) using a splitting scheme which treats the
convection and the diffusion terms separately. The last scheme is a simple discretiza-
tion of the exact macroscopic model (14).

1. The Godunov/Euler scheme: A Godunov scheme for the convection term and
an explicit Euler scheme for the diffusive term of the linearized model (15):

(22) f
(1)
j = G(ρj , ρj+1) +

τ

dx
(ρjV

′(ρj))
2(ρj+1 − ρj).

Such a scheme is the one used in [2].
2. The Godunov/Godunov scheme: A Godunov scheme for the convection term

and a Godunov scheme for the diffusion term of the Taylor-expanded model
(15):

(23) f
(2)
j = G(ρj , ρj+1) +

τ

dx
ρjV

′(ρj)
[

G(ρj+1, ρj+2) − G(ρj , ρj+1)
]

.

3. The Godunov scheme: A Godunov scheme for the modified convection term
in the exact macroscopic model (14):

(24) f
(3)
j = G

(

ρj

1 − τ
dx

(

V (ρj+1) − V (ρj)
) ,

ρj+1

1 − τ
dx

(

V (ρj+2) − V (ρj+1)
)

)

.

Note that this scheme is valid if 1 − τ
dx

(

V (ρj+1) − V (ρj)
)

> 0 for all ρj and
ρj+1. By denoting V0 = supx V (x), this inequality holds if

(25) τ < dx /V0.

Proposition 2. In a system of K cells with periodic boundary conditions, the
homogeneous configurations for which ρj(t) = ρe for all j and t are linearly stable for
the discrete traffic model (20) if and only if

(26) α2 + β2 + γ2 + ξ2 − 2αγ − 2βξ + 2h(cl) < 1 ∀l = 1, . . . ,K − 1,

with cl = cos(2πl/K) and h(x) = (αβ +αξ +βξ − 3γξ)x+2(αγ +βξ)x2 +4γξx3, and
α = ∂F

∂ρj
, β = ∂F

∂ρj+1
, γ = ∂F

∂ρj+2
, and ξ = ∂F

∂ρj−1
the partial derivatives of the model in

equilibrium.

Proof. The perturbations to homogeneous solution are the variables εj(t) = ρj(t)−
ρe. The perturbed system is
(27)
εj(t + dt) = ρj(t + dt) − ρe = F (ρj(t), ρj+1(t), ρj+2(t), ρj−1(t)) − ρe

= α εj(t) + β εj+1(t) + γ εj+2(t) + ξ εj−1(t) + o(LC(εj , εj−1, εj+1, εj+2)),

with α = ∂F
∂ρj

, β = ∂F
∂ρj+1

, γ = ∂F
∂ρj+2

, and ξ = ∂F
∂ρj−1

at (ρe, ρe, ρe, ρe). General

conditions for the global stability of the discrete schemes can be obtained for a system
of K cells with periodic boundary conditions for which the equilibrium density ρe =
N/(K dx), N being the number of agents. The linear perturbed system is ~ε (t +
dt) = M ~ε (t), with ~ε = T(ε1, . . . , εK) and M a sparse matrix with (ξ, α, β, γ) on the
diagonal. If M = PDP−1 with D a diagonal matrix, then ~ε (t) = PDt/ dtP−1 ~ε (0)→~0
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if all the coefficients of D are less than 1, except for one coefficient which is equal
to 1. M is circulant; therefore, the eigenvectors of M are z(ι0, ι1, . . . , ιm−1) with
ι = exp

(

i 2πl
K

)

and z ∈ Z, and the eigenvalues are λl = α + βιl + γι2l + ξι−1
l . The

system is linearly stable if |λl| < 1 for all l = 1, . . . ,K − 1. This is

(28) λ2
l = α2 + β2 + γ2 + ξ2 − 2αγ − 2βξ + 2h(cl) < 1 ∀l = 1, . . . ,K − 1,

with cl = cos(2πl/K) and h(x) = (αβ + αξ + βξ − 3γξ)x + 2(αγ + βξ)x2 + 4γξx3.

These conditions (26) are applied to the different numerical schemes (22), (23),
and (24) with optimal speed V (ρ) = 1

T (1/ρ − ℓ), T > 0 being the vehicles’ time gap
and ℓ ≥ 0 the vehicles’ size. For such speed functions, the Godunov scheme is simply
G(x, y) = 1

T (1 − yℓ).

Lemma 3. The homogeneous configurations are linearly stable for the Godunov/Euler
scheme (20)–(22) if

(29) 2τ < Tℓ dx ρ2
e,

and if dt is sufficiently small.

Proof. Mixed with the scheme for the density (20), Godunov/Euler scheme (22)
is
(30)

F1(ρj , ρj+1, ρj+2, ρj−1) = ρj+
dt

T dx

(

ℓ(ρj+1 − ρj) +
τ

T dx

(

ρj − ρj−1

ρ2
j−1

−
ρj+1 − ρj

ρ2
j

))

,

where α = 1 − A + 2B, β = A − B, γ = 0, and ξ = −B with A = dt ℓ
T dx

and

B = dt τ
(T dx ρe)2

.

If τ < 1
2Tℓ dx ρ2

e, then α > 0 for

(31) dt <
T dx

ℓ + 2τ
T dx ρ2

e

,

and for all dt ≥ 0 if τ ≥ 1
2Tℓ dx ρ2

e. Moreover, 1 − α > 0 if τ < 1
2Tℓ dx ρ2

e, while β is
positive only if τ < Tℓ dx ρ2

e and the sign of ξ is the one of −τ .
The stability conditions are distinguished according to the sign of τ .

• If τ < 0 and (31) holds, then h(x) = α(1−α)x+2βξx2 is strictly convex and
is maximal on [−1, 1] for x = −1 or x = 1. Therefore, the model is stable if
h(−1) < h(1); this is simply −α(1−α) < α(1−α), which is always true since
α > 0 if (31) holds and 1 − α > 0 on τ < 0. Therefore, the system is stable
for all τ < 0.

• Several cases have to be distinguished for τ > 0. We assume in the following
that (31) holds.

– For 0 < τ < 1
2Tℓ dx ρ2

e, we have α, 1 − α, β > 0, ξ < 0, and h(x) =

α(1−α)x+2βξx2 is strictly concave and maximal for x0 = −α(1−α)
4βξ > 0.

The model is stable if x0 > 1; this is

(32) dt <
T dx

ℓ
−

2τ

(ℓρe)2
.

This condition is more restrictive than (31).
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– For 1
2Tℓ dx ρ2

e < τ < Tℓ dx ρ2
e, we have α, β > 0, 1−α, ξ < 0, and h(−1) >

h(1); therefore, the model is unstable. More precisely, h maximal for
x0 < −1; i.e., the unstable solutions have the shortest wavelength if

(33) dt <

(

τ −
1

2
Tℓ dx ρ2

e

)(

2τ

T dx ρe

)−2

.

This condition is also more restrictive than (31).
– For τ > Tℓ dx ρ2

e, we have α > 0, 1 − α, β, ξ < 0, and the system is
unstable for all dt with shortest wavelength since h(·) is strictly convex
and h(−1) > h(1).

The stability conditions for the Godunov/Euler splitting scheme (22) are sum-
marized in Figure 2. The same conditions as the continuous macroscopic model are
obtained for dx → 0 and dt → 0 such that dt / dx → 0. At the limit dt → 0, the stability
does not occur as soon as the reaction time τ is positive if the space discretization
dx is sufficiently small. Large dx may lead to stability even if τ is positive due to
numerical stabilization.

Stable

dt < Tdx

ℓ− 2τ

T dxρ2
e

Stable

dt < Tdx

ℓ − 2τ
(ℓρe)2

Unstable

dt <
τ− 1

2
Tℓdxρ2

e
(

2τ
T dxρe

)2

Shortest
Wavelength

Unstable

For all dt > 0

Shortest
Wavelength

1
2Tℓdxρ2

e0 Tℓdxρ2
e τ

Fig. 2. Summary of the stability conditions for the Godunov/Euler splitting scheme (22).

Lemma 4. The homogeneous configurations are linearly stable for the Godunov/Euler
schemes (20)–(23) and (20)–(24) if

(34) 2|τ | < T dx ρe,

and if dt is sufficiently small.

Proof. The Godunov numerical schemes (23) and (24) are, respectively,
(35)

F2(ρj , ρj+1, ρj+2, ρj−1) = ρj +
dt ℓ

T dx

(

ρj+1 − ρj +
τ

T dx

(

ρj+1 − ρj+2

ρj
−

ρj − ρj+1

ρj−1

))

and
(36)

F3(ρj , ρj+1, ρj+2, ρj−1) = ρj +
dt ℓ

T dx

( ρj+1

1 − τ
T dx

(

1
ρj+2

− 1
ρj+1

) −
ρj

1 − τ
T dx

(

1
ρj+1

− 1
ρj

)

)

.

By construction, both give α = 1 − A(1 + B), β = A(1 + 2B), γ = −AB, and ξ = 0
with A = dt ℓ

T dx
and B = τ

T dx ρe
. As expected, the stability conditions of these two

schemes are the same.
If τ > −T dx ρe, then α > 0 for

(37) dt <
T dx

ℓ + ℓτ
T dx ρe

,
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and for all dt ≥ 0 if τ ≤ −T dx ρe. β is positive only if τ > − 1
2T dx ρe. Moreover,

1 − β > 0 if (37) holds, while the sign of γ is the one of −τ .
Here again, the stability conditions are distinguished according to the sign of τ .

• If τ < 0 and (37) holds, h(x) = β(1 − β)x + 2αγx2 is strictly convex and
maximal on [−1, 1] for x = −1 or x = 1. Therefore, the model is stable if
h(−1) < h(1); this is

(38) τ > −
1

2
T dx ρe and dt <

T dx

ℓ + 2ℓτ
T dx ρe

.

The condition for dt is weaker than (37) since τ is negative. If τ ≤ −1
2T dx ρe,

then the system is unstable at the shortest wavelength frequency. A sufficient
condition for the finite system producing the shortest frequency is simply
K ≥ 2. Note that no condition holds on dt if τ ≤ −T dx ρe.

• If τ > 0 and (37) holds, then h(x) = β(1 − β)x + 2αγx2 is concave and

is maximum at arg supx h(x) = x0 = −β(1−β)
4αγ > 0. We know that λ2

0 =

α2 + β2 + γ2 − 2αβ + h(1) = 1 (case l = 0). Therefore, the model is stable if
x0 > 1; this is

(39) τ <
1

2
T dx ρe and dt <

T dx

ℓ
−

2τ

ℓρe
.

The condition for dt is stronger than (37). If τ ≥ 1
2T dx ρe, then the system

is unstable at the frequency cos−1(x0) that is reachable in the finite system
if K > 2π/ cos−1(x0). We have x0 → 1/2 + T dx ρe/(4τ) as dt → 0, going from
1 to 1/2 according to τ (long wave).

The stability conditions for the Godunov/Godunov and Godunov schemes (23)
and (24) are summarized in Figure 3. The same conditions as the microscopic model
are obtained at the limit dt → 0 for dx = 1/ρe, i.e., a space step equal to the mean
spacing. In this case, the stability occurs when the absolute value of the reaction time
τ is smaller than two times the time gap T (see (6) and [4]).

Unstable

for all dt > 0

Shortest
wavelength

Unstable

dt < Tdx

ℓ+ ℓτ
T dxρe

Shortest
wavelength

Stable

dt < Tdx

ℓ+ ℓτ
T dxρe

Stable

dt < Tdx

ℓ − 2τ
ℓρe

Unstable

dt < Tdx

ℓ+ ℓτ
T dxρe

Wavelength
from N/2 to N/6

0− 1
2Tdxρe−Tdxρe

1
2Tdxρe τ

Fig. 3. Summary of the stability conditions for the Godunov/Godunov and Godunov schemes
(23) and (24). Note that we have the additional condition τ < dx /V0, with V0 = sup

x
V (x), for the

simple Godunov scheme (24).

3.3. Bounds on the speed and the density. The microscopic model (5) is
collision-free: the spacing remains by construction bigger than the vehicle length
ℓ > 0, and the speed is positive and bounded. We check whether this property also
occurs with the numerical schemes Fn, n = 1, 2, 3, of the macroscopic models (30),
(35), and (36). The models are of the first order; therefore, the speed is necessarily
positive and bounded if the optimal velocity functions are so defined. Moreover, the
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density remains bounded in [1, ρM ], with ρM = 1/ℓ, if

(40) Fn(0, a, b, c) ≥ 0 and Fn(ρM , a, b, c) ≤ ρM ∀ (a, b, c).

It is easy to check that such a property holds only if τ ≤ 0 for the Godunov/Euler equa-
tion (30), while it holds for τ ≥ − dx ρe/W ′ with the Godunov/Godunov scheme (35),
and for τ < dx /V0 with the simple Godunov scheme (36). The nonlinear part of the
diffusion term −τ∂x

(

(ρV ′(ρ))2∂xρ
)

in (15) allows us to avoid unrealistic unbounded
density level phenomena that can be obtained by using linear diffusion models (see
[14, 3]).

As the microscopic model, (35) and (36) are able to describe macroscopically
unstable homogeneous solutions with large waves by ensuring that speed and density
remain positive and bounded. The relation between instability and self-sustained
traffic waves (or jamitons) are notably described in [18, 35, 36, 42] with microscopic
and macroscopic second order models. In the next section, we analyze by simulation
the unstable solutions we get with the first order models for different initial conditions.

4. Simulation results. In this section numerical simulations of the microscopic
model (5) and of the simple Godunov scheme (36) macroscopic model are compared.
The car-following model (5) is simulated using an explicit Euler scheme. A ring (peri-
odic boundaries) with a length 101 and 50 vehicles is considered. The optimal speed
functions are W (∆) = max{0,min{2,∆ − 1}} and V (ρ) = W (1/ρ) corresponding
to a triangular fundamental diagram, while the reaction time is τ = 1. The val-
ues of the parameters are set to obtain unstable homogeneous solutions. The time
step is dt = 0.01. The space step for the Godunov scheme is the mean spacing
dx = 101/50 = 2.02 in order to match the stability conditions of both microscopic and
macroscopic models (see (6) and Figure 3) and to hold the CFL conditions (see (25)
and Figure 3). Three experiments are carried out with different initial conditions. In
the first one, the initial configuration is a jam. The initial condition is random in the
second experiment, while it is a perturbed homogeneous configuration in the last one.

4.1. Trajectories. In Figures 4, 5, and 6, the trajectories of the microscopic
model and the time series for the density by cell for the discrete macroscopic model
(gray levels) are plotted for, respectively, the jam, random, and perturbed initial
conditions. The jam propagation is stationary within the first experiment in Figure 4.
Both microscopic and macroscopic models rigorously describe the same dynamics.
The dynamics obtained does not perfectly coincide for the random and perturbed
initial conditions (see Figures 5 and 4). Yet most of the dynamics seems to be well
recaptured—notably the self-sustained emergence of traffic stop-and-go waves. Note
that the waves propagate backward with the speed −ℓ/T that is close to the value
empirically observed (see [33]).

4.2. Fundamental diagram. The fundamental diagram is the plot of the flow
or the mean speed as a function of the density. It generally refers to spatial perfor-
mances [16] that have to be distinguished from temporal ones [46]. Here, to deal with
spatial performances, we measured the spatial speed and the density and expressed
the flow as the product of the density by the speed. The density for the microscopic
model is the inverse of the spacing (see (7)), while the speed in the macroscopic model
is (see (9))

(41) Ṽ (ρj , ρj+1) = V

(

ρ

1 − τρ(V (ρj+1) − V (ρj))

)

.
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Fig. 4. The trajectories of the microscopic model (cyan curves) and the time series for the
density by cell for the discrete macroscopic model (gray levels) for jam initial conditions.
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Fig. 5. The trajectories of the microscopic model (cyan curves) and the time series for the
density by cell for the discrete macroscopic model (gray levels) for random initial conditions.

The sequences obtained for the perturbed initial conditions (see Figure 6) are pre-
sented in Figure 7. The performances are instantaneous ones in the sense that they
correspond to instantaneous measurements for a vehicle (microscopic model) and a
cell (macroscopic model) in the system. The variability in such a diagram is larger
than that of the aggregated fundamental diagram plotted in [24, Figure 1] and [49,
Figure 5], where the performances were averaged over time intervals.

Both microscopic and macroscopic systems converge to limit-cycles with self-
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Fig. 6. The trajectories of the microscopic model (cyan curves) and the time series for the
density by cell for the discrete macroscopic model (gray levels) for perturbed initial conditions.
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Fig. 7. Sequence of speed and flow/density relation for the perturbed initial conditions (see
Figure 6). Left, for one vehicle (microscopic model), and right, for one cell (macroscopic model).

sustained stop-and-go waves resulting in hysteresis curves in the microscopic funda-
mental diagram. Such phenomena generate scattering of the fundamental diagram
for which some bounds can be calculated [48, 12, 20, 13, 42, 17]. The bounds V +

and V − for the fundamental diagrams can here intuitively be determined from the
microscopic model. The upper bound V + corresponds to the sequence of a vehicle
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moving at maximal speed V0 behind a stopped vehicle:

(42) V +(ρ) = Ṽ (ρ, 1/ℓ) = V

(

ρ

1 + τρV (ρ)

)

.

Due to the reaction time, the distance tends to be smaller and the fundamental dia-
gram is “overestimated.” Oppositely, the lower bound V − corresponds to the sequence
of a stopped vehicle following a predecessor moving at the maximal speed V0:

(43) V −(ρ) = Ṽ (ρj , 0) = V

(

ρ

1 − τρ(V0 − V (ρ))

)

.

Here the reaction time induces a delay in the acceleration and an underestimation of
the fundamental diagram.

As in [42, 17], the bounds (42) and (43) obtained with the macroscopic model
are compared to real instantaneous pedestrian and road traffic data in Figures 8
and 9. The pedestrian data comes from a laboratory experiment with participants
in a ring geometry [19]. Several experiments have been carried out with different
density levels. The road traffic data are real measurements of trajectories on an
American highway [34]. The speed, density, and flow are measured as previously
(i.e., the density is the inverse of the spacing, while the flow is the product of the
density by the speed). A triangular fundamental diagram with three parameters
V (ρ) = min

{

V0,
1
T (1/ρ−1)

}

is used again. The parameters are those of an estimation
by least squares for the pedestrians V0 = 0.9 m/s, ℓ = 0.3 m, and T = τ = 1 s (see
Figure 8), while V0 = 15 m/s, ℓ = 5 m, and T = τ = 2 s for the vehicles (see Figure 9).
The bounds present a reasonable agreement with the data, even if no clustering of
measurements is observed around them.
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Fig. 8. Instantaneous speed/density and flow/density measurements for real pedestrian flows
[19] and the bounds (42) and (43) for V0 = 0.9 m/s, ℓ = 0.3 m, and T = τ = 1 s.

5. Conclusion. Starting from a speed-following model, we derive a parabolic
convection-diffusion continuum traffic flow model that we discretized using Godunov
and Euler schemes. Simulation results show that discrete macroscopic models can
recapture the dynamics of the microscopic model if specific values for the space dis-
cretization are chosen. More precisely, the linear stability conditions of the homoge-
neous solutions for the macroscopic models match those of the microscopic model for
specific values of the space discretization and sufficiently small time steps.
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Fig. 9. Individual speed/density and flow/density measurements for real road traffic flows [34]
and the bounds (42) and (43) for V0 = 15 m/s, ℓ = 5 m, and T = τ = 2 s.

For unstable conditions, i.e., for large reaction times, the dynamics obtained
describe self-sustained stop-and-go waves, with hysteresis cycles and a large scattering
of the fundamental flow/density diagram. Such characteristics are observed in real
data [45, 25, 24, 10, 49] as well as for second order models [48, 12, 20, 6, 18, 42, 13, 17].
Here it is achieved with first order models ensuring by construction that the models
are physical and “collision-free” (i.e., bounded and having positive speed as well as
density). Further investigations are necessary to understand the impact of the shape
of the optimal velocity function on the characteristics of the waves.

The macroscopic model corresponding to the follow-the-leader model is a first
order elliptic convection-diffusion equation, for which the convection part is calibrated
by the optimal velocity function (i.e., the fundamental diagram), while the diffusion is
proportional to the reaction time parameter. More precisely, the diffusion is negative
in deceleration phases where the density increases, and it is positive in acceleration
phases where the density decreases. Such a mechanism seems to be responsible for
the appearance of oscillations and self-sustained nonlinear stop-and-go waves in the
system. This observation remains to be confirmed rigorously, yet it could give us a
way to explain the wave formations.
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