000842031 001__ 842031
000842031 005__ 20240712100827.0
000842031 0247_ $$2doi$$a10.5194/acp-2017-833
000842031 0247_ $$2ISSN$$a1680-7367
000842031 0247_ $$2ISSN$$a1680-7375
000842031 0247_ $$2Handle$$a2128/16486
000842031 0247_ $$2altmetric$$aaltmetric:32011830
000842031 037__ $$aFZJ-2018-00315
000842031 082__ $$a550
000842031 1001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b0$$eCorresponding author$$ufzj
000842031 245__ $$aThe maintenance of elevated active chlorine levels in the Antarctic lower straosphere through HCl null cycles
000842031 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000842031 3367_ $$2DRIVER$$aarticle
000842031 3367_ $$2DataCite$$aOutput Types/Journal article
000842031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515597519_4339
000842031 3367_ $$2BibTeX$$aARTICLE
000842031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842031 3367_ $$00$$2EndNote$$aJournal Article
000842031 520__ $$aThe Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying ("active") chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate, how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16–18 km or 100–70 hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null-cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null-cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl, the production of HOCl via HO2 + ClO, with the HO2 resulting from CH2O photolysis, is essential. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl → HCl + CH3) and that extreme ozone destruction to levels below ≈ 0.1 ppm will occur until mid-century.
000842031 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000842031 588__ $$aDataset connected to CrossRef
000842031 7001_ $$0P:(DE-Juel1)129122$$aGrooss, Jens-Uwe$$b1$$ufzj
000842031 7001_ $$0P:(DE-Juel1)166571$$aZafar, Abdul Mannan$$b2
000842031 7001_ $$0P:(DE-HGF)0$$aLehmann$$b3
000842031 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2017-833$$gp. 1 - 20$$p833$$tAtmospheric chemistry and physics / Discussions$$v17$$x1680-7367$$y2017
000842031 8564_ $$uhttps://juser.fz-juelich.de/record/842031/files/acp-2017-833.pdf$$yOpenAccess
000842031 8564_ $$uhttps://juser.fz-juelich.de/record/842031/files/acp-2017-833.gif?subformat=icon$$xicon$$yOpenAccess
000842031 8564_ $$uhttps://juser.fz-juelich.de/record/842031/files/acp-2017-833.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842031 8564_ $$uhttps://juser.fz-juelich.de/record/842031/files/acp-2017-833.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842031 8564_ $$uhttps://juser.fz-juelich.de/record/842031/files/acp-2017-833.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842031 909CO $$ooai:juser.fz-juelich.de:842031$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000842031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b0$$kFZJ
000842031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b1$$kFZJ
000842031 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000842031 9141_ $$y2017
000842031 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842031 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842031 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842031 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842031 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000842031 9801_ $$aFullTexts
000842031 980__ $$ajournal
000842031 980__ $$aVDB
000842031 980__ $$aUNRESTRICTED
000842031 980__ $$aI:(DE-Juel1)IEK-7-20101013
000842031 981__ $$aI:(DE-Juel1)ICE-4-20101013