000842034 001__ 842034
000842034 005__ 20240712100840.0
000842034 0247_ $$2doi$$a10.5194/acp-2017-856
000842034 0247_ $$2ISSN$$a1680-7367
000842034 0247_ $$2ISSN$$a1680-7375
000842034 0247_ $$2Handle$$a2128/16489
000842034 0247_ $$2altmetric$$aaltmetric:27676412
000842034 037__ $$aFZJ-2018-00318
000842034 082__ $$a550
000842034 1001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b0$$eCorresponding author
000842034 245__ $$aWater vapor increase in the northern lower stratosphere by the Asian monsoon anticyclone observed during TACTS/ESMVal campaigns
000842034 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000842034 3367_ $$2DRIVER$$aarticle
000842034 3367_ $$2DataCite$$aOutput Types/Journal article
000842034 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515655233_5540
000842034 3367_ $$2BibTeX$$aARTICLE
000842034 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842034 3367_ $$00$$2EndNote$$aJournal Article
000842034 520__ $$aThe impact of air masses from Asia influenced by the Asian monsoon anticyclone on the northern hemispheric stratosphere is investigated based on in-situ measurements. An statistical significant increase in water vapor of about 0.5 ppmv (11 %) and methane up to 20 ppbv (1.2 %) in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation in the northern hemisphere during the HALO aircraft mission TACTS and ESMVal. We investigate the origin of this water vapor and methane increase with the help of the three-dimensional Lagrangian chemistry transport model CLaMS. We assign the source of the moist air masses in the Asian region (North and South India, East China, South East Asia and tropical Pacific) based on tracers of airmass origin used in CLaMS. The water vapor increase is correlated to an increase of the simulated Asian monsoon air mass contribution from 10 % in August to 20 % in September, which corresponds to a doubling of the influence of air masses affected by the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate between transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the imprint of water vapor concentration along these trajectories occur, can be exclusively attributed to the Asian monsoon region.
000842034 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000842034 588__ $$aDataset connected to CrossRef
000842034 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b1$$ufzj
000842034 7001_ $$0P:(DE-HGF)0$$aHoor, Peter$$b2
000842034 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b3$$ufzj
000842034 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b4
000842034 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b5
000842034 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b6
000842034 7001_ $$0P:(DE-HGF)0$$aMüller, Stefan$$b7
000842034 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b8$$ufzj
000842034 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b9$$ufzj
000842034 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2017-856$$gp. 1 - 16$$p1 - 16$$tAtmospheric chemistry and physics / Discussions$$v856$$x1680-7375$$y2017
000842034 8564_ $$uhttps://juser.fz-juelich.de/record/842034/files/acp-2017-856.pdf$$yOpenAccess
000842034 8564_ $$uhttps://juser.fz-juelich.de/record/842034/files/acp-2017-856.gif?subformat=icon$$xicon$$yOpenAccess
000842034 8564_ $$uhttps://juser.fz-juelich.de/record/842034/files/acp-2017-856.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842034 8564_ $$uhttps://juser.fz-juelich.de/record/842034/files/acp-2017-856.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842034 8564_ $$uhttps://juser.fz-juelich.de/record/842034/files/acp-2017-856.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842034 8564_ $$uhttps://juser.fz-juelich.de/record/842034/files/acp-2017-856.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842034 909CO $$ooai:juser.fz-juelich.de:842034$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b0$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b1$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b3$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b4$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b5$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b6$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b8$$kFZJ
000842034 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b9$$kFZJ
000842034 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000842034 9141_ $$y2017
000842034 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842034 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842034 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842034 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842034 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842034 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842034 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000842034 9801_ $$aFullTexts
000842034 980__ $$ajournal
000842034 980__ $$aVDB
000842034 980__ $$aUNRESTRICTED
000842034 980__ $$aI:(DE-Juel1)IEK-7-20101013
000842034 981__ $$aI:(DE-Juel1)ICE-4-20101013