001     842034
005     20240712100840.0
024 7 _ |a 10.5194/acp-2017-856
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/16489
|2 Handle
024 7 _ |a altmetric:27676412
|2 altmetric
037 _ _ |a FZJ-2018-00318
082 _ _ |a 550
100 1 _ |a Rolf, Christian
|0 P:(DE-Juel1)139013
|b 0
|e Corresponding author
245 _ _ |a Water vapor increase in the northern lower stratosphere by the Asian monsoon anticyclone observed during TACTS/ESMVal campaigns
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515655233_5540
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The impact of air masses from Asia influenced by the Asian monsoon anticyclone on the northern hemispheric stratosphere is investigated based on in-situ measurements. An statistical significant increase in water vapor of about 0.5 ppmv (11 %) and methane up to 20 ppbv (1.2 %) in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation in the northern hemisphere during the HALO aircraft mission TACTS and ESMVal. We investigate the origin of this water vapor and methane increase with the help of the three-dimensional Lagrangian chemistry transport model CLaMS. We assign the source of the moist air masses in the Asian region (North and South India, East China, South East Asia and tropical Pacific) based on tracers of airmass origin used in CLaMS. The water vapor increase is correlated to an increase of the simulated Asian monsoon air mass contribution from 10 % in August to 20 % in September, which corresponds to a doubling of the influence of air masses affected by the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate between transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the imprint of water vapor concentration along these trajectories occur, can be exclusively attributed to the Asian monsoon region.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vogel, Bärbel
|0 P:(DE-Juel1)129164
|b 1
|u fzj
700 1 _ |a Hoor, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Afchine, Armin
|0 P:(DE-Juel1)129108
|b 3
|u fzj
700 1 _ |a Günther, Gebhard
|0 P:(DE-Juel1)129123
|b 4
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 5
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 6
700 1 _ |a Müller, Stefan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Spelten, Nicole
|0 P:(DE-Juel1)129155
|b 8
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 9
|u fzj
773 _ _ |a 10.5194/acp-2017-856
|g p. 1 - 16
|0 PERI:(DE-600)2069857-4
|p 1 - 16
|t Atmospheric chemistry and physics / Discussions
|v 856
|y 2017
|x 1680-7375
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842034/files/acp-2017-856.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842034/files/acp-2017-856.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842034/files/acp-2017-856.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842034/files/acp-2017-856.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842034/files/acp-2017-856.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842034/files/acp-2017-856.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842034
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)139013
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129131
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129138
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129155
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21