000842038 001__ 842038
000842038 005__ 20210129232153.0
000842038 0247_ $$2doi$$a10.1002/mrm.26624
000842038 0247_ $$2ISSN$$a0740-3194
000842038 0247_ $$2ISSN$$a1522-2594
000842038 0247_ $$2pmid$$apmid:28244138
000842038 0247_ $$2WOS$$aWOS:000414967400015
000842038 037__ $$aFZJ-2018-00322
000842038 082__ $$a610
000842038 1001_ $$0P:(DE-HGF)0$$aTse, Desmond H. Y.$$b0
000842038 245__ $$aB1+ inhomogeneity mitigation in CEST using parallel transmission
000842038 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2017
000842038 3367_ $$2DRIVER$$aarticle
000842038 3367_ $$2DataCite$$aOutput Types/Journal article
000842038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515655104_5539
000842038 3367_ $$2BibTeX$$aARTICLE
000842038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842038 3367_ $$00$$2EndNote$$aJournal Article
000842038 520__ $$aPurposeIn order to benefit from the increased spectral bandwidth at ultrahigh field (UHF), the use of parallel transmission (pTx) to mitigate flip-angle inhomogeneity in chemical exchange saturation transfer (CEST) imaging is investigated.Theory and MethodsA pTx basis pulse is homogenised by magnitude least-squares (MLS) optimization and expanded to form a frequency-selective saturation pulse for CEST. The pTx saturation pulse was simulated with a three-pool Bloch-McConnell equation to evaluate the impact of pTx on CEST contrast. In vivo CEST imaging performance (7 T) of the pTx saturation pulse and the standard Gaussian saturation in circularly polarized mode were compared. Two-spokes pTx homogeneous excitation was used in all in vivo experiments to ensure fair comparison of the two saturation pulses. Magnetization transfer ratio and inverse Z-spectrum analyses were used as metrics in evaluating the data from 3 healthy volunteers.ResultsBloch-McConnell simulations showed that side bands of the pTx saturation pulse at ±20 ppm did not affect any CEST contrast. Improved homogeneity in contrasts and relaxation-compensated CEST metrics were observed in our in vivo data when the pTx saturation pulse was used.ConclusionA pTx-based pulsed CEST presaturation scheme is proposed and validated by simulations and 7T in vivo imaging. Magn Reson Med 78:2216–2225, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
000842038 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000842038 588__ $$aDataset connected to CrossRef
000842038 7001_ $$0P:(DE-HGF)0$$ada Silva, Nuno Andre$$b1
000842038 7001_ $$0P:(DE-HGF)0$$aPoser, Benedikt A.$$b2
000842038 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3$$eCorresponding author
000842038 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.26624$$gVol. 78, no. 6, p. 2216 - 2225$$n6$$p2216 - 2225$$tMagnetic resonance in medicine$$v78$$x0740-3194$$y2017
000842038 8564_ $$uhttps://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000842038 8564_ $$uhttps://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.gif?subformat=icon$$xicon$$yRestricted
000842038 8564_ $$uhttps://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000842038 8564_ $$uhttps://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-180$$xicon-180$$yRestricted
000842038 8564_ $$uhttps://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-640$$xicon-640$$yRestricted
000842038 8564_ $$uhttps://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842038 909CO $$ooai:juser.fz-juelich.de:842038$$pVDB
000842038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000842038 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000842038 9141_ $$y2017
000842038 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000842038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2015
000842038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842038 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842038 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000842038 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000842038 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000842038 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842038 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000842038 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000842038 980__ $$ajournal
000842038 980__ $$aVDB
000842038 980__ $$aI:(DE-Juel1)INM-4-20090406
000842038 980__ $$aI:(DE-82)080010_20140620
000842038 980__ $$aUNRESTRICTED