001     842038
005     20210129232153.0
024 7 _ |a 10.1002/mrm.26624
|2 doi
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a pmid:28244138
|2 pmid
024 7 _ |a WOS:000414967400015
|2 WOS
037 _ _ |a FZJ-2018-00322
082 _ _ |a 610
100 1 _ |a Tse, Desmond H. Y.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a B1+ inhomogeneity mitigation in CEST using parallel transmission
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515655104_5539
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeIn order to benefit from the increased spectral bandwidth at ultrahigh field (UHF), the use of parallel transmission (pTx) to mitigate flip-angle inhomogeneity in chemical exchange saturation transfer (CEST) imaging is investigated.Theory and MethodsA pTx basis pulse is homogenised by magnitude least-squares (MLS) optimization and expanded to form a frequency-selective saturation pulse for CEST. The pTx saturation pulse was simulated with a three-pool Bloch-McConnell equation to evaluate the impact of pTx on CEST contrast. In vivo CEST imaging performance (7 T) of the pTx saturation pulse and the standard Gaussian saturation in circularly polarized mode were compared. Two-spokes pTx homogeneous excitation was used in all in vivo experiments to ensure fair comparison of the two saturation pulses. Magnetization transfer ratio and inverse Z-spectrum analyses were used as metrics in evaluating the data from 3 healthy volunteers.ResultsBloch-McConnell simulations showed that side bands of the pTx saturation pulse at ±20 ppm did not affect any CEST contrast. Improved homogeneity in contrasts and relaxation-compensated CEST metrics were observed in our in vivo data when the pTx saturation pulse was used.ConclusionA pTx-based pulsed CEST presaturation scheme is proposed and validated by simulations and 7T in vivo imaging. Magn Reson Med 78:2216–2225, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a da Silva, Nuno Andre
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Poser, Benedikt A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
|e Corresponding author
773 _ _ |a 10.1002/mrm.26624
|g Vol. 78, no. 6, p. 2216 - 2225
|0 PERI:(DE-600)1493786-4
|n 6
|p 2216 - 2225
|t Magnetic resonance in medicine
|v 78
|y 2017
|x 0740-3194
856 4 _ |u https://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842038/files/Tse_et_al-2017-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842038
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21