001     842041
005     20210129232153.0
024 7 _ |a 10.1016/j.ymeth.2017.07.025
|2 doi
024 7 _ |a 1046-2023
|2 ISSN
024 7 _ |a 1095-9130
|2 ISSN
024 7 _ |a pmid:28774682
|2 pmid
024 7 _ |a WOS:000414879700015
|2 WOS
024 7 _ |a altmetric:32011835
|2 altmetric
037 _ _ |a FZJ-2018-00325
082 _ _ |a 540
100 1 _ |a Oros-Peusquens, A. M.
|0 P:(DE-Juel1)131782
|b 0
|e Corresponding author
245 _ _ |a Methods for molecular imaging of brain tumours in a hybrid MR-PET context: Water content, T 2 ∗ , diffusion indices and FET-PET
260 _ _ |a Orlando, Fla.
|c 2017
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576652945_4543
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aim of this study is to present and evaluate a multiparametric and multi-modality imaging protocol applied to brain tumours and investigate correlations between these different imaging measures. In particular, we describe a method for rapid, non-invasive, quantitative imaging of water content of brain tissue, based on a single multiple-echo gradient-echo (mGRE) acquisition. We include in the processing a method for noise reduction of the multi-contrast data based on Principal Component Analysis (PCA). Noise reduction is a key ingredient to obtaining high-precision water content and transverse relaxation T2∗ values. The quantitative method is applied to brain tumour patients in a hybrid MR-PET environment. Active tumour tissue is identified by means of FET-PET; oedema, white and grey-matter segmentation is performed based on MRI contrasts. Water content information is not only relevant by itself, but also as a basis for correlations with other quantitative measures of water behaviour in tissue and interpreting the microenvironment of water. Water content in active tumour tissue (84%) and oedema (79%) regions is found to be higher than that of normal WM (69%) and close to that of normal GM (83%). Consistent with literature reports, mean kurtosis is measured to be lower in tumour and oedema regions than in normal WM and GM, whereas mean diffusivity is increased. Voxel-based correlations between water content and diffusion indices obtained with diffusion kurtosis tensor imaging, and between quantitative MRI and FET-PET are reported for 8 brain tumour patients. The effective transverse relaxation time T2∗ is found to be the MR parameter showing the strongest correlations with other MR indices derived here and with FET-PET.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Loução, R.
|0 P:(DE-Juel1)169114
|b 1
700 1 _ |a Zimmermann, Markus
|0 P:(DE-Juel1)162442
|b 2
|u fzj
700 1 _ |a Langen, K.-J.
|0 P:(DE-Juel1)131777
|b 3
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 4
773 _ _ |a 10.1016/j.ymeth.2017.07.025
|g Vol. 130, p. 135 - 151
|0 PERI:(DE-600)1471152-7
|p 135 - 151
|t Methods
|v 130
|y 2017
|x 1046-2023
856 4 _ |u https://juser.fz-juelich.de/record/842041/files/1-s2.0-S1046202317300907-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842041/files/1-s2.0-S1046202317300907-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842041/files/1-s2.0-S1046202317300907-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842041/files/1-s2.0-S1046202317300907-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842041/files/1-s2.0-S1046202317300907-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842041/files/1-s2.0-S1046202317300907-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:842041
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131782
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169114
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METHODS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21