001     842059
005     20240711114026.0
024 7 _ |a 10.1088/1361-6455/aa987d
|2 doi
024 7 _ |a 0022-3700
|2 ISSN
024 7 _ |a 0368-3508
|2 ISSN
024 7 _ |a 0953-4075
|2 ISSN
024 7 _ |a 1361-6455
|2 ISSN
024 7 _ |a WOS:000418673900002
|2 WOS
024 7 _ |a altmetric:30859959
|2 altmetric
037 _ _ |a FZJ-2018-00340
082 _ _ |a 530
100 1 _ |a Marchuk, Oleksandr
|0 P:(DE-Juel1)5739
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Emission of fast hydrogen atoms at a plasma–solid interface in a low density plasma containing noble gases
260 _ _ |a Bristol
|c 2018
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515660955_5535
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The source of the broad radiation of fast hydrogen atoms in plasmas containing noble gases remains one of the most discussed problems relating to plasma–solid interface. In this paper, we present a detailed study of Balmer lines emission generated by fast hydrogen and deuterium atoms in an energy range between 40 and 300 eV in a linear magnetised plasma. The experiments were performed in gas mixtures containing hydrogen or deuterium and one of the noble gases (He, Ne, Ar, Kr or Xe). In the low-pressure regime (0.01–0.1 Pa) of plasma operation emission is detected by using high spectral and spatial resolution spectrometers at different lines-of-sight for different target materials (C, Fe, Rh, Pd, Ag and W). We observed the spatial evolution for H α , H β and H γ lines with a resolution of 50 μm in front of the targets, proving that emission is induced by reflected atoms only. The strongest radiation of fast atoms was observed in the case of Ar–D or Ar–H discharges. It is a factor of five less in Kr–D plasma and an order of magnitude less in other rare gas mixture plasmas. First, the present work shows that the maximum of emission is achieved for the kinetic energy of 70–120 eV/amu of fast atoms. Second, the emission profile depends on the target material as well as surface characteristics such as the particle reflection, e.g. angular and energy distribution, and the photon reflectivity. Finally, the source of emission of fast atoms is narrowed down to two processes: excitation caused by collisions with noble gas atoms in the ground state, and excitation transfer between the metastable levels of argon and the excited levels of hydrogen or deuterium.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brandt, Christian
|0 P:(DE-Juel1)161560
|b 1
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 2
700 1 _ |a Reinhart, M.
|0 P:(DE-Juel1)144825
|b 3
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 4
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 5
700 1 _ |a Dickheuer, S.
|0 P:(DE-Juel1)165722
|b 6
773 _ _ |a 10.1088/1361-6455/aa987d
|g Vol. 51, no. 2, p. 025702 -
|0 PERI:(DE-600)1363381-8
|n 2
|p 025702 -
|t Journal of physics / B
|v 51
|y 2018
|x 1361-6455
856 4 _ |u https://juser.fz-juelich.de/record/842059/files/Marchuk_2018_J._Phys._B__At._Mol._Opt._Phys._51_025702.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842059/files/Marchuk_2018_J._Phys._B__At._Mol._Opt._Phys._51_025702.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842059/files/Marchuk_2018_J._Phys._B__At._Mol._Opt._Phys._51_025702.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842059/files/Marchuk_2018_J._Phys._B__At._Mol._Opt._Phys._51_025702.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842059/files/Marchuk_2018_J._Phys._B__At._Mol._Opt._Phys._51_025702.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842059/files/Marchuk_2018_J._Phys._B__At._Mol._Opt._Phys._51_025702.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842059
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)5739
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144825
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165722
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS B-AT MOL OPT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21