001     842074
005     20210129232201.0
024 7 _ |a 10.1021/acs.jpclett.7b02548
|2 doi
024 7 _ |a pmid:29083905
|2 pmid
024 7 _ |a WOS:000416291600019
|2 WOS
024 7 _ |a altmetric:28324259
|2 altmetric
037 _ _ |a FZJ-2018-00355
082 _ _ |a 530
100 1 _ |a Shavorskiy, Andrey
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting
260 _ _ |a Washington, DC
|c 2017
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515675224_5541
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photoelectrochemical water splitting is a promising pathway for the direct conversion of renewable solar energy to easy to store and use chemical energy. The performance of a photoelectrochemical device is determined in large part by the heterogeneous interface between the photoanode and the electrolyte, which we here characterize directly under operating conditions using interface-specific probes. Utilizing X-ray photoelectron spectroscopy as a noncontact probe of local electrical potentials, we demonstrate direct measurements of the band alignment at the semiconductor/electrolyte interface of an operating hematite/KOH photoelectrochemical cell as a function of solar illumination, applied potential, and doping. We provide evidence for the absence of in-gap states in this system, which is contrary to previous measurements using indirect methods, and give a comprehensive description of shifts in the band positions and limiting processes during the photoelectrochemical reaction.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ye, Xiaofei
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Karslıoğlu, Osman
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Poletayev, Andrey D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hartl, Matthias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zegkinoglou, Ioannis
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Trotochaud, Lena
|0 0000-0002-8816-3781
|b 6
700 1 _ |a Nemšák, Slavomir
|0 P:(DE-Juel1)164137
|b 7
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 8
700 1 _ |a Crumlin, Ethan J.
|0 0000-0003-3132-190X
|b 9
700 1 _ |a Axnanda, Stephanus
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Liu, Zhi
|0 0000-0002-8973-6561
|b 11
700 1 _ |a Ross, Philip N.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Chueh, William
|0 0000-0002-7066-3470
|b 13
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 14
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.jpclett.7b02548
|g Vol. 8, no. 22, p. 5579 - 5586
|0 PERI:(DE-600)2522838-9
|n 22
|p 5579 - 5586
|t The @journal of physical chemistry letters
|v 8
|y 2017
|x 1948-7185
856 4 _ |u https://juser.fz-juelich.de/record/842074/files/acs.jpclett.7b02548.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842074/files/acs.jpclett.7b02548.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842074/files/acs.jpclett.7b02548.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842074/files/acs.jpclett.7b02548.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842074/files/acs.jpclett.7b02548.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842074/files/acs.jpclett.7b02548.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842074
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)172019
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS CHEM LETT : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21