000842125 001__ 842125
000842125 005__ 20240712100830.0
000842125 0247_ $$2doi$$a10.5194/amt-11-215-2018
000842125 0247_ $$2ISSN$$a1867-1381
000842125 0247_ $$2ISSN$$a1867-8548
000842125 0247_ $$2Handle$$a2128/16563
000842125 0247_ $$2WOS$$aWOS:000419988400001
000842125 0247_ $$2altmetric$$aaltmetric:31581781
000842125 037__ $$aFZJ-2018-00404
000842125 082__ $$a550
000842125 1001_ $$0P:(DE-Juel1)156465$$aMeyer, Catrin I.$$b0$$eCorresponding author
000842125 245__ $$aIntercomparison of AIRS and HIRDLS stratospheric gravity wave observations
000842125 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000842125 3367_ $$2DRIVER$$aarticle
000842125 3367_ $$2DataCite$$aOutput Types/Journal article
000842125 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516007783_30488
000842125 3367_ $$2BibTeX$$aARTICLE
000842125 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842125 3367_ $$00$$2EndNote$$aJournal Article
000842125 520__ $$aWe investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
000842125 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842125 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x1
000842125 588__ $$aDataset connected to CrossRef
000842125 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b1
000842125 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000842125 7001_ $$0P:(DE-Juel1)151304$$aTrinh, Quang Thai$$b3
000842125 7001_ $$0P:(DE-HGF)0$$aAlexander, M. Joan$$b4
000842125 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-11-215-2018$$gVol. 11, no. 1, p. 215 - 232$$n1$$p215 - 232$$tAtmospheric measurement techniques$$v11$$x1867-8548$$y2018
000842125 8564_ $$uhttps://juser.fz-juelich.de/record/842125/files/amt-11-215-2018.pdf$$yOpenAccess
000842125 8564_ $$uhttps://juser.fz-juelich.de/record/842125/files/amt-11-215-2018.gif?subformat=icon$$xicon$$yOpenAccess
000842125 8564_ $$uhttps://juser.fz-juelich.de/record/842125/files/amt-11-215-2018.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842125 8564_ $$uhttps://juser.fz-juelich.de/record/842125/files/amt-11-215-2018.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842125 8564_ $$uhttps://juser.fz-juelich.de/record/842125/files/amt-11-215-2018.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842125 8564_ $$uhttps://juser.fz-juelich.de/record/842125/files/amt-11-215-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842125 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pamt-2017-235
000842125 909CO $$ooai:juser.fz-juelich.de:842125$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000842125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156465$$aForschungszentrum Jülich$$b0$$kFZJ
000842125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b1$$kFZJ
000842125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000842125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151304$$aForschungszentrum Jülich$$b3$$kFZJ
000842125 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842125 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x1
000842125 9141_ $$y2018
000842125 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842125 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842125 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842125 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2015
000842125 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842125 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842125 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842125 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842125 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842125 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842125 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842125 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842125 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842125 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842125 920__ $$lyes
000842125 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842125 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000842125 9801_ $$aFullTexts
000842125 980__ $$ajournal
000842125 980__ $$aVDB
000842125 980__ $$aUNRESTRICTED
000842125 980__ $$aI:(DE-Juel1)JSC-20090406
000842125 980__ $$aI:(DE-Juel1)IEK-7-20101013
000842125 980__ $$aAPC
000842125 981__ $$aI:(DE-Juel1)ICE-4-20101013