001     842131
005     20210129232215.0
024 7 _ |a 10.1126/science.aan8862
|2 doi
024 7 _ |a pmid:29170206
|2 pmid
024 7 _ |a WOS:000416590400032
|2 WOS
024 7 _ |a altmetric:29344553
|2 altmetric
037 _ _ |a FZJ-2018-00410
082 _ _ |a 500
100 1 _ |0 P:(DE-Juel1)170083
|a Volkov, Oleksandr
|b 0
|u fzj
245 _ _ |a Structural insights into ion conduction by channelrhodopsin 2
260 _ _ |a Washington, DC [u.a.]
|b American Association for the Advancement of Science
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1515761709_31878
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Ion channels are integral membrane proteins that upon stimulation modulate the flow of ions across the cell or organelle membrane. The resulting electrical signals are involved in biological functions such as electrochemical transmission and information processing in neurons. Channelrhodopsins (ChRs) appear to be unusual channels. They belong to the large family of microbial rhodopsins, seven-helical transmembrane proteins containing retinal as chromophore. Photon absorption initiates retinal isomerization resulting in a photocycle, with different spectroscopically distinguishable intermediates, thereby controlling the opening and closing of the channel. In 2003, it was demonstrated that light-induced currents by heterologously expressed ChR2 can be used to change a host’s membrane potential. The concept was further applied to precisely control muscle and neural activity by using light-induced depolarization to trigger an action potential in neurons expressing ChR2. This optogenetic approach with ChR2 and other ChRs has been widely used for remote control of neural cells in culture and in living animals with high spatiotemporal resolution. It is also used in biomedical studies aimed to cure severe diseases.
536 _ _ |0 G:(DE-HGF)POF3-551
|a 551 - Functional Macromolecules and Complexes (POF3-551)
|c POF3-551
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)169220
|a Kovalev, Kirill
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a polovinkin
|b 2
700 1 _ |0 P:(DE-Juel1)144613
|a Borshchevskiy, Valentin
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Bamann, Christian
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Astashkin, Roman
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Marin, Egor
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Popov, Alexander
|b 7
700 1 _ |0 P:(DE-Juel1)131949
|a Balandin, Taras
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)132029
|a Willbold, Dieter
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)131957
|a Büldt, Georg
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Bamberg, Ernst
|b 11
|e Corresponding author
700 1 _ |0 P:(DE-Juel1)131964
|a Gordeliy, Valentin
|b 12
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2066996-3
|a 10.1126/science.aan8862
|n 6366
|p eaan8862
|t Science
|v 358
|x 0193-4511
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/842131/files/eaan8862.full.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842131/files/eaan8862.full.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842131/files/eaan8862.full.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842131/files/eaan8862.full.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842131/files/eaan8862.full.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842131/files/eaan8862.full.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842131
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)170083
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)169220
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131949
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132029
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131964
|a Forschungszentrum Jülich
|b 12
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0020
|2 StatID
|a No Peer Review
|b ASC
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21