001     842143
005     20240708132723.0
037 _ _ |a FZJ-2018-00422
100 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 0
|u fzj
111 2 _ |a 1st World conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors
|c Pondicherry
|d 2017-09-06 - 2017-09-09
|w India
245 _ _ |a Thin film deposition of garnet electrolytes for high energy density all-solid-state lithium batteries
260 _ _ |c 2017
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1517220604_23352
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Thin film deposition of garnet electrolytes for high energy density all-solid-state lithium batteriesIn recent years battery research concentrated on reaching batteries with high energy and power density and high safety at the same time. A combination of high-voltage cathode materials and solid electrolytes are one approach to fulfill the requirements of future cell technologies. A promising solid electrolyte is the garnet structured Li7La3Zr2O12 (LLZ) because of its high Li-ion conductivity (around 1 mS cm-1) and high chemical (stable with lithium metal) and electrochemical stability. If the solid electrolyte is applied as a thin film, the energy density of the cell will increase remarkably.Our group already showed the deposition of LLZ thin films with a thickness of around 1.8 µm on steel substrates by sputter deposition [1]. The layers showed an in-plane conductivity of 1.2x10-4 S cm-1 at room temperature, which is comparable to bulk LLZ and is the highest value for garnet-structured thin films so far. However, the required high deposition temperature of 700°C leads to unwanted side reactions with the used substrate. This reaction gives a Li-Al-O interlayer with high ionic resistance which makes it not possible for battery application.For a successful combination of LLZ thin films with high-voltage cathodes a decrease of deposition temperature is mandatory, for example high-voltage spinels react with LLZ at temperatures around 500°C [2]. Sputter deposition is a useful technique for depositing thin films far from thermodynamic equilibrium, e.g. the deposition of the high temperature phase of LiCoO2 cathode at around 500°C shows how powerful the technique can be [3]. As a further advantage, sputter deposition processes are comparably easy up-scalable, which would facilitate industrial application.In this presentation, different approaches for lowering the deposition temperature as well as the influence of deposition parameters and annealing conditions on the composition, microstructure and electrochemical properties of garnet-structured thin films will be discussed. Approaches of combining garnet-structured thin films with high-voltage cathode materials will also be presented.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)165951
|b 2
|u fzj
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 3
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 4
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:842143
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21