001     842144
005     20210129232218.0
024 7 _ |a 10.1021/acs.analchem.7b02393
|2 doi
024 7 _ |a 0003-2700
|2 ISSN
024 7 _ |a 0096-4484
|2 ISSN
024 7 _ |a 1520-6882
|2 ISSN
024 7 _ |a pmid:29099580
|2 pmid
024 7 _ |a WOS:000416498100019
|2 WOS
024 7 _ |a altmetric:28736099
|2 altmetric
037 _ _ |a FZJ-2018-00423
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Moudříková, Šárka
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Quantification of Polyphosphate in Microalgae by Raman Microscopy and by a Reference Enzymatic Assay
260 _ _ |a Columbus, Ohio
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516699926_21758
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polyphosphates have occurred in living cells early in evolution and microalgae also contain these important polymers in their cells. Progress in research of polyphosphate metabolism of these ecologically as well asbiotechnologically important microorganisms is hampered by the lack of rapid quantification methods. Experiments with the green alga model Chlorella vulgaris presented here compared polyphosphate extraction in water, methanol-chloroform, and phenol-chloroform followed by polyphosphate purification by binding to silica columns or ethanol precipitation. The phenol-chloroform extraction of C. vulgaris followed by ethanol precipitation of polyphosphate was shown to be superior to the other tested method variants. Recovery of added polyphosphate standard to algal biomass showed that the method is accurate. Using this biochemical assay as a validated reference, we show that 2-dimensional, confocal Raman microscopy can serve as a linear proxy for polyphosphate in C. vulgaris with R2 up to 0.956. With this, polyphosphate quantificationcan be shortened by use of Raman microscopy from days to hours and, additionally, information about intracellular distribution of polyphosphate and heterogeneity among individual cells in algal culture can be obtained. This offers new insights into the dynamics and role of these polymers crucial for phosphorus uptake and storage. This analytical capability is of particular practical importance because algae aid phosphorus sequestration from wastewater and the thus enriched biomass may serve as organic fertilizer. Both these applications have a strong potential in a future sustainable, circular bioeconomy.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a AF AlgalFertilizer - AlgalFertilizer (20172303)
|0 G:(BioSC)20172303
|c 20172303
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Sadowsky, Andres
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Metzger, Sabine
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nedbal, Ladislav
|0 P:(DE-Juel1)159592
|b 3
700 1 _ |a Mettler-Altmann, Tabea
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mojzeš, Peter
|0 0000-0002-9952-6939
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.analchem.7b02393
|g Vol. 89, no. 22, p. 12006 - 12013
|0 PERI:(DE-600)1483443-1
|n 22
|p 12006 - 12013
|t Analytical chemistry
|v 89
|y 2017
|x 1520-6882
856 4 _ |u https://juser.fz-juelich.de/record/842144/files/acs.analchem.7b02393-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842144/files/acs.analchem.7b02393-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842144/files/acs.analchem.7b02393-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842144/files/acs.analchem.7b02393-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842144/files/acs.analchem.7b02393-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842144/files/acs.analchem.7b02393-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842144
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159592
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ANAL CHEM : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21