001     842191
005     20240711114028.0
024 7 _ |2 doi
|a 10.1088/0031-8949/2017/T170/014005
024 7 _ |2 WOS
|a WOS:000414120500005
024 7 _ |a altmetric:24566236
|2 altmetric
037 _ _ |a FZJ-2018-00459
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)165931
|a Mao, Yiran
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites
260 _ _ |a Bristol
|b IoP Publ.
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1521463394_8744
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.
536 _ _ |0 G:(DE-HGF)POF3-174
|a 174 - Plasma-Wall-Interaction (POF3-174)
|c POF3-174
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)2594
|a Coenen, Jan Willem
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Riesch, J.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Sistla, S.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Almanstötter, J.
|b 4
700 1 _ |0 P:(DE-Juel1)158038
|a Jasper, Bruno
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)130166
|a Terra, Alexis
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Höschen, T.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Gietl, H.
|b 8
700 1 _ |0 P:(DE-Juel1)129591
|a Bram, Martin
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)162214
|a Gonzales, Jesus
|b 10
700 1 _ |0 P:(DE-Juel1)157640
|a Linsmeier, Christian
|b 11
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Broeckmann, C.
|b 12
773 _ _ |0 PERI:(DE-600)1477351-x
|a 10.1088/0031-8949/2017/T170/014005
|g Vol. T170, p. 014005 -
|p 7 / 014005
|t Physica scripta
|v 2017
|x 0031-8949
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/842191/files/Mao_2017_Phys._Scr._2017_014005-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842191/files/Mao_2017_Phys._Scr._2017_014005-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842191/files/Mao_2017_Phys._Scr._2017_014005-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842191/files/Mao_2017_Phys._Scr._2017_014005-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842191/files/Mao_2017_Phys._Scr._2017_014005-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842191/files/Mao_2017_Phys._Scr._2017_014005-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842191
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165931
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)2594
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158038
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130166
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129591
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157640
|a Forschungszentrum Jülich
|b 11
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-174
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Kernfusion
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21