001     842288
005     20240610121114.0
024 7 _ |a 10.1088/1361-648X/aaa4d5
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a pmid:29297854
|2 pmid
024 7 _ |a WOS:000422878100001
|2 WOS
037 _ _ |a FZJ-2018-00535
082 _ _ |a 530
100 1 _ |a Hoore, Masoud
|0 P:(DE-Juel1)166533
|b 0
245 _ _ |a Flow-induced adhesion of shear-activated polymers to a substrate
260 _ _ |a Bristol
|c 2018
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531738082_26638
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Adhesion of polymers and proteins to substrates plays a crucial role in many technological applications and biological processes. A prominent example is the von Willebrand factor (VWF) protein, which is essential in blood clotting as it mediates adhesion of blood platelets to the site of injury at high shear rates. VWF is activated by flow and is able to bind efficiently to damaged vessel walls even under extreme flow-stress conditions; however, its adhesion is reversible when the flow strength is significantly reduced or the flow is ceased. Motivated by the properties and behavior of VWF in flow, we investigate adhesion of shear-activated polymers to a planar wall in flow and whether the adhesion is reversible under flow stasis. The main ingredients of the polymer model are cohesive inter-monomer interactions, a catch bond with the adhesive surface, and the shear activation/deactivation of polymer adhesion correlated with its stretching in flow. The cohesive interactions within the polymer maintain a globular conformation under low shear stresses and allow polymer stretching if a critical shear rate is exceeded, which is directly associated with its activation for adhesion. Our results show that polymer adhesion at high shear rates is significantly stabilized by catch bonds, while at the same time they also permit polymer dissociation from a surface at low or no flow stresses. In addition, the activation/deactivation mechanism for adhesion plays a crucial role in the reversibility of its adhesion. These observations help us better understand the adhesive behavior of VWF in flow and interpret its adhesion malfunctioning in VWF-related diseases.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
536 _ _ |a Margination and Adhesion of Particles and Cells in Blood Flow (jiff44_20140501)
|0 G:(DE-Juel1)jiff44_20140501
|c jiff44_20140501
|f Margination and Adhesion of Particles and Cells in Blood Flow
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rack, Kathrin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fedosov, Dmitry A
|0 P:(DE-Juel1)140336
|b 2
|e Corresponding author
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 3
|e Corresponding author
773 _ _ |a 10.1088/1361-648X/aaa4d5
|g Vol. 30, no. 6, p. 064001 -
|0 PERI:(DE-600)1472968-4
|n 6
|p 064001
|t Journal of physics / Condensed matter
|v 30
|y 2018
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/842288/files/Hoore_2018_J._Phys.__Condens._Matter_30_064001.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842288/files/Hoore_2018_J._Phys.__Condens._Matter_30_064001.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842288/files/Hoore_2018_J._Phys.__Condens._Matter_30_064001.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842288/files/Hoore_2018_J._Phys.__Condens._Matter_30_064001.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842288/files/Hoore_2018_J._Phys.__Condens._Matter_30_064001.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842288/files/Hoore_2018_J._Phys.__Condens._Matter_30_064001.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:842288
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166533
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21