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Hydrodynamic fluctuations in simple fluids under shear flow are demonstrated to be spatially correlated, in

contrast to the fluctuations at equilibrium, using mesoscopic hydrodynamic simulations. The simulation results

for the equal-time hydrodynamic correlations in a multiparticle collision dynamics (MPC) fluid in shear flow are

compared with the explicit expressions obtained from fluctuating hydrodynamics calculations. For large wave

vectors k, the nonequilibrium contributions to transverse and longitudinal velocity correlations decay as k−4 for

wave vectors along the flow direction and as k−2 for the off-flow directions. For small wave vectors, a crossover

to a slower decay occurs, indicating long-range correlations in real space. The coupling between the transverse

velocity components, which vanishes at equilibrium, also exhibits a k−2 dependence on the wave vector. In

addition, we observe a quadratic dependency on the shear rate of the nonequilibrium contribution to pressure.
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I. INTRODUCTION

Fluctuations are an integral part of static and dynamic

properties of a fluid. At equilibrium, characteristic properties

such as viscosity, compressibility, thermal diffusivity, etc.,

are often calculated from correlations in the hydrodynamic

fluctuations [1]. The hydrodynamic fluctuations in simple

fluids at equilibrium are well known to be spatially short-

ranged [2]. However, in nonequilibrium steady states they are,

in general, long-ranged [3]. These long-range correlations are

present even in the absence of phase transitions and hydro-

dynamic instabilities. The long-range nature of hydrodynamic

fluctuations in nonequilibrium steady states was first observed

by mode-coupling theories as the enhancement of the Rayleigh

component of the structure factor under temperature gradi-

ents [4]. This observation was complemented by fluctuating

hydrodynamics calculations [5] and was also confirmed in

light-scattering experiments [6,7].

Hydrodynamic fluctuations in shear flow, similar to those

in temperature gradients, are distinctively different from the

fluctuations at equilibrium [8–13]. In Ref. [8], using fluctuating

hydrodynamics calculations, the correlations in hydrodynamic

fluctuations in a sheared fluid were evaluated for small wave

vectors and arbitrary shear rates. It was shown that the temporal

decay of the velocity and density fluctuations in shear flow

are anisotropic and shear-rate dependent, which we recently

verified using mesoscopic hydrodynamic simulations [14].

More importantly, the equal-time correlations were predicted

to be spatially long-ranged and follow an algebraic decay for

unbounded systems. The algebraic decay of the correlations in

shear flow shares some similarities with that in temperature

gradients, albeit the origin of the long-range character is

apparently different [15]. The long-range nature of the cor-

relations may also manifest as nonintensivity of the nonequi-

librium contribution to pressure [9]. Moreover, the spatial

correlations imply that the long-wavelength components of the

fluctuations are strongly affected by the presence of confining

walls [10,11,16,17].

The nonequilibrium contribution to the hydrodynamic fluc-

tuations in shear flow under normal experimental conditions

is much weaker than that in temperature gradients [8–10].

As a result, very little is known about the long-range nature

of hydrodynamic correlations from shear-flow experiments.

However, computer simulations provide alternative testing

grounds for hydrodynamic theories. In this paper, we show

by multiparticle collision dynamics (MPC) simulations, a

mesoscopic hydrodynamic simulation method [18,19], that

hydrodynamic fluctuations in shear flow are indeed spa-

tially correlated. In particular, we elucidate the wave-vector

dependence of the nonequilibrium contribution to velocity

and density fluctuations. To this end, we derive the explicit

analytical expressions for the equal-time correlation functions

in an isothermal MPC fluid under shear flow and confirm the

theoretical predictions by simulations. Our calculations are

based on those in Ref. [8], extending them to isothermal fluids

with an asymmetric stress tensor.

This paper is organized as follows. In Sec. II A, the

linearized Landau-Lifshitz Navier-Stokes equations for an

MPC fluid under shear flow are derived. In Sec. II B, the

equal-time hydrodynamic correlation functions are defined

and explicit expressions for the nonequilibrium contributions

are obtained. The details of the MPC simulations are given in

Sec. III A. The comparison between theoretical and simulation

results for the velocity and density correlations are presented

in Secs. III B 1 and III B 2. The simulation results for the

nonequilibrium contribution to the pressure are given in

Sec. III B 3. Conclusions are presented in Sec. IV.

II. THEORY

A. Linearized Landau-Lifshitz Navier-Stokes equation

of MPC fluid

We consider the non-angular-momentum conserving vari-

ant of a MPC fluid, which is characterized by the asymmetric

stress tensor [19–21]

σαβ = ηk

[

∂uα

∂rβ

+
∂uβ

∂rα

−
2

3
δαβ

∂uδ

∂rδ

]

+ ηc ∂uα

∂rβ

, (1)
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where ηk and ηc are the kinetic and collisional parts of

the viscosity, respectively. Here, the Greek indices denote

the Cartesian coordinates, and the Einstein summation con-

vention is applied. We consider an isothermal fluid, where

the temperature fluctuations decay at a much shorter time

scale compared to density and velocity fluctuations, so that

the dynamics of the two sets are decoupled and the temperature

can be taken as constant [22,23]. The evolution of the density ρ

and velocity u of the fluid are then given by the Landau-Lifshitz

Navier-Stokes equations

∂ρ

∂t
= −∇ · (ρu), (2)

ρ

[

∂

∂t
+ u · ∇

]

u = −∇p + η∇2u +
ηk

3
∇(∇ · u) + fR, (3)

with the viscosity η = ηk + ηc, the random force fR = ∇ · σR ,

and the fluctuating part σR of the stress tensor. The fluctuations

σR obey the fluctuation-dissipation relation [24]
〈

σR
αβ(r,t)σR

γ δ(r′,t ′)
〉

= 2kBT ηαβγ δδ(r − r′)δ(t − t ′), (4)

where T is the temperature and kB is the Boltzmann factor.

The viscosity coefficients ηαβγ δ are related to the stress tensor

through the constitutive relation σαβ = ηαβγ δ
∂uγ

∂rδ
[24]. Using

the explicit form of σαβ from Eq. (1), we get

ηαβγ δ = ηδαγ δβδ + ηkδαδδβγ −
2

3
ηkδαβδγ δ. (5)

Equations (2) and (3) are linearized by setting ρ = ρ0 + δρ,

p = p0 + δp, and u = u0 + δu, where the mean flow velocity

is u0α = γ̇αβrβ , with the shear rate tensor γ̇αβ . We choose

x̂ as the flow direction and ŷ as the gradient direction (the

circumflex indicates unit vectors), such that γ̇αβ = γ̇ δαxδβy ,

where γ̇ is the shear rate. The MPC fluid is characterized

by the ideal-gas equation of state [18,19,23], and therefore

the pressure fluctuations at constant temperature are given by

δp = c2
T δρ, where cT is the isothermal speed of sound. On

linearizing, Eqs. (2) and (3) can then be written in the Fourier

space as [8,14]

∂ z̃

∂t
+

[

−γ̇ kx

∂

∂ky

+ L(k,γ̇ )

]

z̃ = R̃, (6)

where z̃ = (δρ̃,δũ(1),δũ(2),δũ(3)), with ũ(α) = δũ(k) · e(α)(k),

R̃α+1 = f̃ · e(α), and R̃1 = 0. Here, {e(α)} is a set of orthogonal

unit vectors with e(1) pointing along the wave vector. Thereby,

δũ(1) is the longitudinal and δũ(2) and δũ(3) are the transverse

components of the velocity fluctuations. Here, functions with

a tilde indicate the Fourier components of the hydrodynamic

fields and random forces. As in Ref. [8], we choose the unit

vectors as

e(1) = k̂,

e(2) =
1

k̂⊥

[

ŷ − e(1)e(1)
y

]

, (7)

e(3) = e(1) × e(2),

for which the matrix L(k,γ̇ ) takes a simple form. Here, k̂⊥ =
(k2

x + k2
z )1/2/k and k = |k|. The explicit form of L(k,γ̇ ) for an

isothermal MPC fluid is presented in Ref. [14]. The solution

of Eq. (6) can then be written as [13,14]

z̃i(k,t) =
4

∑

j=1

Gij (k,t)z̃j [k(−t),0]

+
4

∑

j=1

∫ t

0

dt ′Gij (k,t ′)R̃j [k(−t ′),t − t ′], (8)

where i ∈ {1,2,3,4} and the propagator Gij (k,t) is given by

Gij (k,t) =
4

∑

l=1

ξ
(l)
i (k)η

(l)
j [k(−t)]e−

∫ t

0
dτλl [k(−τ )]. (9)

Here, the time-dependent wave vector is defined as k(t) =
(kx,ky − γ̇ tkx,kz), and ξ (l) and η(l) are, respectively, the

right and left eigenvectors of the operator −γ̇ kx∂/∂ky + L,

corresponding to eigenvalue λl . In addition,
∑4

l=1 ξ
(l)
i η

(l)
j =

δij , so that {ξ ,η} forms a biorthogonal basis. The eigenvectors

and eigenvalues can be obtained perturbatively as expansions

in the wave vector [8]. The explicit expressions are given in

Ref. [14].

B. Correlation functions

The steady-state equal-time correlation functions Cij (k,γ̇ )

of the hydrodynamic variables are defined by

lim
t→∞

〈z̃i(k,t)z̃j (k′,t)〉 = (2π )3δ(k + k′)Cij (k,γ̇ ). (10)

From Eqs. (8) and (9), and using the condition Gij (k,t) = 0

for t → ∞, we obtain

Cij (k,γ̇ ) =
4

∑

l,m=1

∫ ∞

0

dtξ
(l)
i (k,t)ξ

(m)
j (−k,t)F (lm)[k(−t)],

(11)

where we have used the definitions

ξ
(l)
i (k,t) = ξ

(l)
i (k)e−

∫ t

0
dτλl [k(−τ )], (12)

〈R̃i(k,t)R̃j (k′,t ′)〉 = (2π )3δ(k + k′)δ(t − t ′)R̃ij (k), (13)

F (lm)(k) =
4

∑

i,j=1

η
(l)
i (k)η

(m)
j (−k)R̃ij (k). (14)

The matrix elements R̃ij (k) and therefore F (ij )(k) for the MPC

fluid can be calculated using Eqs. (4) and (5). The expressions

for F (ij )(k), and thereby the relevant correlation functions

Cij (k,γ̇ ), are identical to those presented in Ref. [8], with

the isentropic coefficients replaced by isothermal counterparts,

even though the stress tensor of the MPC fluid is asymmetric.

With the explicit form of F (ij )(k), η(k), and ξ (k,t), the

density and velocity correlations and the coupling between

the transverse velocity components can be written as [8]

Cii(k,γ̇ ) = Cii(k,0)[1 + �ii(k,γ̇ )] (15)

and

C34(k,γ̇ ) =
kBT

ρ0

�34(k,γ̇ ), (16)
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where the equilibrium correlations are C11(k,0) = ρ0kBT/c2
T ,

with cT the isothermal speed of sound, and Cii(k,0) =
kBT/ρ0 for i = 2,3,4, and Cij (k,0) = 0 for i 
= j [14,25].

The nonequilibrium contributions �ij (k,γ̇ ) are given by

�11 = �22 = −γ̇

∫ ∞

0

dt
kkxky(−t)

k3(−t)
e−ν̃χ(k,t), (17)

�33 = 2γ̇

∫ ∞

0

dt
kxky(−t)

k2
e−2νχ (k,t), (18)

�34 = γ̇

∫ ∞

0

dt

[

2kxky(−t)

kk(−t)
F (k,t) −

kz

k

]

e−2νχ (k,t), (19)

with the kinematic viscosity ν = η/ρ0, the sound attenuation

factor ν̃ = (η + ηk/3)/ρ0, and

χ (k,t) = k2t + γ̇ kxky t
2 +

1

3
γ̇ 2k2

x t
3, (20)

F (k,t) = M[k(−t)] −
k(−t)

k
M(k). (21)

Here,

M(k) = −
kkz

kxk⊥
arctan

(

ky

k⊥

)

(22)

and k2
⊥ = k2

x + k2
z . We do not provide the expression for �44,

which corresponds to the transverse velocity correlations in

the direction perpendicular to the gradient direction, as the

corresponding simulation data suffer from large statistical

errors. We note that for an incompressible fluid �11 and �22

vanish, while �33 retains the form as in Eq. (18) [11,26]. The

simulation results for the transverse velocity component, as

will be discussed in the following section, will therefore also

hold for incompressible fluids.

III. SIMULATION APPROACH

A. MPC simulations

In MPC simulations, the fluid is represented by point par-

ticles and their positions, and velocities evolve in alternating

discrete steps: streaming and collision. In the streaming, the

particles moves ballistically; i.e., the positions are updated as

ri(t + h) = ri(t) + hvi(t), (23)

where h is the time step. In the collision, the particles are

grouped into cubic cells of length a, and a stochastic rotation

of the relative velocities, with respect to the center-of-mass

velocity, of the particles is performed in each cell; i.e.,

vi(t + h) = vcm(t) + R(α)[vi(t) − vcm(t)], (24)

where

vcm =
1

Nc

∑

i∈cell

vi . (25)

Here, Nc is the number of particles in the cell which contains

particle i. R(α) is the rotation matrix around a randomly

oriented axis, and α is the rotation angle [18,19]. The shear

flow is implemented by Lees-Edwards boundary conditions,

in which the flow is generated by moving periodic simulation

boxes by a velocity proportional to the boxes’ vertical position

compared to the primary box [27,28]. This boundary condition

is well suited for studying bulk properties of sheared fluids,

as it eliminates finite size effects due to solid boundary

walls. In order to maintain an isothermal state under shear,

we employ a cell-level Maxwell-Boltzmann rescaling of the

relative velocities of the particles [29]. This rescaling method

for MPC fluid has been shown to reproduce the isothermal

states consistent with the fluctuating Navier-Stokes equations

in equilibrium and under shear flow [14,25].

Length and time scales in our simulations are given in terms

of the length a of a cubic cell and τ =
√

ma2/kBT , where m

is the mass of a MPC fluid particle. The rotation angle α

is chosen as 130◦, the average number of fluid particles per

cell as 〈Nc〉 = 10, and the time steps h = 0.1τ and 0.2τ are

used. The length of the simulation box ranges from L = 20a

to 120a. The values of the transport coefficients for a given

set of simulation parameters can be evaluated from theoretical

expressions [19,21,30] and are given by ν = 0.870a2/τ and

ν̃ = 0.886a2/τ for h = 0.1τ and ν = 0.508a2/τ and ν̃ =
0.540a2/τ for h = 0.2τ .

B. Simulation results and discussion

In order to calculate the correlations in the simulations, the

velocity field of the fluid in Fourier space is defined as

δũ(k) =
m

ρ0

N
∑

i=1

[vi − γ̇ yi x̂]e−ik·ri , (26)

where ρ0 = mN/V is the mean mass density and V = L3.

The mean flow is subtracted from the particle velocity; hence,

δũ represents the thermally fluctuating part. The velocity

correlation functions are then evaluated as

Cij (k,γ̇ ) = V −1〈δũ(i−1)(k)δũ(j−1)(−k)〉, (27)

where i,j ∈ {2,3,4}. C22 corresponds to the longitudinal and

C33 and C44 to the transverse components. At equilibrium,

i.e., γ̇ = 0, the velocity correlation functions with velocity

fields defined as in Eq. (26) are given by Cii = kBT/ρ0 and

Cij = 0 for i 
= j . In order to avoidO(N2) computational time

in evaluating correlation functions in shear flow implemented

by Lees-Edwards boundary conditions [31], the sampling is

carried out at every 1/γ̇ time steps, at which the usual periodic

boundary conditions apply [O(N ) computational time].

1. Velocity fluctuations

As is well known, the velocity fluctuations in a fluid at

equilibrium are isotropic and spatially δ correlated. Thus, in the

Fourier-space representation, the correlations are independent

of the wave vector k. However, as is evident from Eqs. (17)

and (18), the nonequilibrium contribution �ij to the correla-

tions in shear flow depends on the magnitude as well as the

direction of the wave vector, thereby rendering the fluctuations

spatially correlated and anisotropic. Figure 1 displays the

nonequilibrium contributions of the longitudinal (e(1) direc-

tion) and transverse (e(2) direction) velocity correlations for a

wave vector in the flow-gradient plane pointing at an angle 45◦

to the flow direction. The correlations decay as k−2 for large

wave vectors. This power-law dependence for the transverse

velocity correlations has been derived previously [10].
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FIG. 1. The nonequilibrium contribution to the transverse (�33,

top) and longitudinal (�22, bottom) velocity correlations for kx = ky

and kz = 0. The lines correspond to the theoretical predictions given

by Eqs. (17) and (18), and the symbols indicate simulation results.

Parameters: γ̇ = 0.04τ−1 and h = 0.1τ .

Figure 2 displays the nonequilibrium enhancement of trans-

verse velocity correlations for the wave vector pointing along

the flow direction, i.e., ky = kz = 0. As predicted by the theory,

the correlations decay as k−4 for large wave vectors. Since the

k−4 dependence corresponds to diverging correlations in real

space, a slower decay is expected for smaller wave vectors.

From the asymptotic analysis of the correlation functions, it

was shown that the velocity correlations decay as k−4/3 for

small k [9,10,26]. This power-law dependence corresponds to

a r−5/3 decay in real space and is independent of the direction

of the wave vector [10]. Unfortunately, we are not able to probe

this small wave vector decay due to limitations in system size

and shear rate in our simulations. However, it is clear from our

simulation results that the velocity correlations indeed show

a crossover from k−4 (Fig. 2) and also k−2 (Fig. 1) decay
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∆
3
3
(k

,γ. )
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FIG. 2. The nonequilibrium contribution to the transverse veloc-

ity (e(2) direction) correlations for ky = kz = 0. The lines correspond

to the theoretical prediction as given in Eq. (18) and points represent

the simulation data. Parameters: h = 0.2τ and γ̇ = 0.02τ−1 (top) and

γ̇ = 0.01τ−1 (bottom).
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FIG. 3. The coupling between the transverse velocity components

for kx = ky = kz > 0. The inset shows the variation of the coupling

with the shear rate for kz = 2π/60. The lines represent the theoretical

predictions by Eq. (19), and the simulation data are represented by

points. Parameters: h = 0.1τ and γ̇ = 0.04τ−1 for the main plot.

to a slower decay for small wave vectors. The agreement

between the simulation results and the theoretical expressions

for the wave vectors accessible for finite-system sizes strongly

suggest that the correlations for infinite systems would indeed

be long-ranged. It is noteworthy that rigid boundaries, which

are absent in our simulations, is expected to modify the k−4/3

small wave vector decay of the velocity correlations to a k2

dependence [10,11,32].

The transverse components of the fluid-velocity field at

equilibrium are well known to be identical and decoupled.

Under shear, the degeneracy is lifted and the components

become coupled [8,14]. The strength of the coupling is given

by Eq. (19). Figure 3 shows the variation of the coupling for

the wave vector pointing out of the shear-gradient plane. The

coupling decays as k−2, corresponding to r−1 decay, for the

entire range of wave vectors in our simulations. In agreement

with the theory, the coupling increases linearly with shear rate

(cf. inset of Fig. 3). As is evident from Eq. (22), the coupling

vanishes for wave vectors in the shear-gradient plane (kz = 0).

For large shear rates and small wave vectors, we observe

deviations for the velocity correlations obtained by simulations

and predicted theoretically (Fig. 2 top curve). We notice that

a similar unexpected behavior was found for the large-length-

scale decay of real-space correlations in sheared granular flu-

ids [12]. This effect may be attributed to a density dependence

of the viscosity of the fluid. For fluids with density-dependent

viscosity, the density fluctuations will be coupled to the mean

flow velocity through an additional term in the linearized

Navier-Stokes equation. This coupling is non-negligible for

high shear rates and modifies the eigenvalues and eigenvectors

and thereby the hydrodynamic fluctuations. We hope to address

this issue in detail in the future.

2. Density correlations

The density fluctuations, similar to the velocity fluctuations,

become spatially correlated in shear flow. The correlation in
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FIG. 4. Spatial correlations in density fluctuations in shear flow.

The line represents Eq. (29) and symbols simulation results. The

correlations are measured in the shear-gradient plane and in the

direction 45◦ to the flow. Parameters: h = 0.2τ , γ̇ = 0.01τ−1, and

L = 120a.

the density fluctuations is defined as

Cρρ(r) = 〈δρ(r)δρ(0)〉, (28)

where δρ(r) = ρ(r) − ρ0. In simulations, the correlation is

measured as m2〈δn(r0)δn(r0 + r)〉, where n(r) is the number

of MPC particles in a given cell, with r0 and r taken as the

centers of the cells. The theoretical expressions for Cρρ(r) can

be obtained by inverting C11(k,γ̇ ) [see Eq. (15) and subsequent

discussion] and is given by

Cρρ(r) =
mρ0

V

∑

k

[1 + �11(k,γ̇ )] cos(k · r), (29)

where �11(k,γ̇ ) is given by Eq. (17).

Figure 4 shows a comparison of the MPC simulation results

for the density correlations and the numerically evaluated

theoretical expression (29). The agreement between the two

results is good for moderate length scales. The deviation of

the simulation results for small length scales is first due to

the fact that the theoretical expression for the nonequilibrium

contribution �11(k,γ̇ ) is a good approximation for small

wave vectors only. Second, the validity of Navier-Stokes

equations for a MPC fluid breaks down at small length

scales r � π
√

νh [25]. One the other hand, for large length

scales, the simulation data suffer from large statistical errors.

However, for intermediate length scales, the correlations are

well reproduced.

3. Pressure fluctuations

The nonequilibrium contribution to the velocity correla-

tions is also manifested in a shear-rate dependence of the

pressure of the fluid [9]. The pressure in our simulations was

measured as the time average of the diagonal components of

the instantaneous pressure tensor [21]

pαβ =
m

V

N
∑

i=1

[

viαviβ +
1

h
�viαr ′

iβ + δαxδβy

γ̇ h

2
v2

iy

]

, (30)
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∆
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m
 /

a
τ

2
)

FIG. 5. The nonequilibrium contribution to the pressure tensor

[Eq. (30)] for the gradient (triangles) and vorticity (squares) compo-

nents. Parameters: L = 60a, h = 0.1τ .

where vi = vi − γ̇ yi x̂ is the thermal velocity after streaming,

�vi is the change in the velocity in the collision step,

and r′
i is the position of the particle in the grid-shifted

frame in the collision step. The pressure tensor for a MPC

fluid at equilibrium is given by the ideal-gas equation

of state pαβ = δαβn0kBT , where n0 is the mean number

density.

Figure 5 displays the deviation of the diagonal components

of the pressure tensor from the equilibrium value. We observe

that for high shear rates, the deviations vary as γ̇ ζ , with ζ =
2. The exponent ζ associated with the change in pressure

has been controversial. Mode-coupling theory [33] predicts

ζ = 3/2, which has been confirmed in simulations of Lenard-

Jones fluids at the triple point [34]. However, in atom-scale

simulations using two- and three-body potentials, the exponent

was observed to be ζ ≈ 2.0 away from the triple point [35].

The deviation was ascribed to two-body interactions [36,37].

Further systematic studies using the Lenard-Jones potential

found the exponent in the range ζ = 1.2–2.0 as a function

of density and temperature [38], thereby rendering ζ = 3/2

only a special case. Fluctuating hydrodynamics calculations of

incompressible fluids, on the other hand, predict two limiting

regimes of the variation of pressure, depending on the value

of the dimensionless parameter λ = γ̇ L2/ν [9]. The exponent

is expected to be ζ = 2 for λ ≪ 1 and ζ = 3/2 for λ ≫ 1.

However, our simulations yield ζ = 2 even for λ ≫ 1, which

is not a contradiction, as MPC fluid is highly compressible. It

therefore remains for further theoretical and simulation studies

to establish a unified picture of the exponent associated with

the hydrostatic pressure under shear.

IV. CONCLUSIONS

Using MPC simulations, we have unambiguously demon-

strated that the hydrodynamic fluctuations in simple fluids

under shear flow, in contrast to the fluctuations at equilibrium,

are spatially correlated. The correlations in velocity and

density fluctuations are shown to be anisotropic and spatially

correlated over the entire volume of the system. For large
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wave vectors, the decay of the velocity correlations exhibits a

power-law dependence in the wave vector. We observe a k−4

decay for a wave vector pointing along the flow direction

and a k−2-dominated decay along off-flow directions. For

small wave vectors, we observe a crossover to a slower decay,

indicating an algebraic decay of real-space correlations at large

distances. In contrast to the case at equilibrium, the transverse

velocity components are coupled under shear, with a k−2

dependence for the entire range of wave vectors accessible in

our system, corresponding to r−1 real-space correlations. We

find good agreement between the simulation results and the

predictions of fluctuating hydrodynamics without any fitting

parameters.

Although we have shown that the hydrodynamic fluctua-

tions under shear are spatially correlated, it remains for further

simulation studies to show they are truly long-ranged, i.e.,

for instance, that the transverse velocity fluctuations decay

as k−4/3 for small wave vectors. This demands either higher

shear rates or larger system sizes than those accessible in

our current study. Since MPC fluid is compressible with

a density-dependent viscosity, large density fluctuations—

although they are physical—arise under such conditions.

Other hydrodynamic simulation methods for incompressible

fluids, which incorporate thermal fluctuations, may therefore

alternatively prove adequate.

We also find in our simulations that the nonequilibrium con-

tribution to the hydrostatic pressure follows a γ̇ 2 dependency

on shear rate, in contrast to the γ̇ 3/2 dependency predicted

by mode-coupling theory. Our mesoscale simulation result

is in agreement with the findings of previous atom-scale

simulations studies using a range of interaction potentials,

where deviation from the γ̇ 3/2 dependency was observed. A

fundamental understanding of the hydrostatic pressure under

shear is still lacking. The effect of confining walls on pressure

and spatial correlations in hydrodynamic fluctuations are also

yet to be addressed in simulations.
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