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A stereotypical anatomical propagation of tau pathology has been described in Alzheimer’s disease. According to recent concepts

(network degeneration hypothesis), this propagation is thought to be indicative of misfolded tau proteins possibly spreading along

functional networks. If true, tau pathology accumulation should correlate in functionally connected brain regions. Therefore, we

examined whether independent components could be identified in the distribution pattern of in vivo tau pathology and whether

these components correspond with specific functional connectivity networks. Twenty-two 18F-AV-1451 PET scans of patients with

amnestic Alzheimer’s disease (mean age = 66.00 � 7.22 years, 14 males/eight females) were spatially normalized, intensity standardized

to the cerebellum, and z-transformed using the mean and deviation image of a healthy control sample to assess Alzheimer’s disease-

related tau pathology. First, to detect distinct tau pathology networks, the deviation maps were subjected to an independent component

analysis. Second, to investigate if regions of high tau burden are associated with functional connectivity networks, we extracted the

region with the maximum z-value in each of the generated tau pathology networks and used them as seeds in a subsequent resting-state

functional MRI analysis, conducted in a group of healthy adults (n = 26) who were part of the 1000 Functional Connectomes Project.

Third, to examine if tau pathology co-localizes with functional connectivity networks, we quantified the spatial overlap between the

seed-based networks and the corresponding tau pathology network by calculating the Dice similarity coefficient. Additionally, we

assessed if the tau-dependent seed-based networks correspond with known functional resting-state networks. Finally, we examined the

relevance of the identified components in regard to the neuropathological Braak stages. We identified 10 independently coherent tau

pathology networks with the majority showing a symmetrical bi-hemispheric expansion and coinciding with highly functionally con-

nected brain regions such as the precuneus and cingulate cortex. A fair-to-moderate overlap was observed between the tau pathology

networks and corresponding seed-based networks (Dice range: 0.13–0.57), which in turn resembled known resting-state networks,

particularly the default mode network (Dice range: 0.42–0.56). Moreover, greater tau burden in the tau pathology networks was

associated with more advanced Braak stages. Using the data-driven approach of an independent component analysis, we observed a set

of independently coherent tau pathology networks in Alzheimer’s disease, which were associated with disease progression and coincided

with functional networks previously reported to be impaired in Alzheimer’s disease. Together, our results provide novel information

regarding the impact of tau pathology networks on the mechanistic pathway of Alzheimer’s disease.
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Introduction
Alzheimer’s disease is characterized by two neuropatho-

logical hallmarks, i.e. the accumulation of extracellular

amyloid-b plaques and the intracellular aggregation of mis-

folded tau proteins in form of neurofibrillary tangles.

Amyloid-b pathology initially spreads across neo- and allo-

cortical brain regions and only propagates downstream to

the brainstem in late stages of the disease (Thal et al.,

2002), whereas tau pathology first occurs in the locus coer-

uleus and the entorhinal cortex from where it expands up-

stream to limbic and isocortical regions (Braak and Braak,

1991, 1995). Several hypotheses have been suggested to

explain the spreading and distribution of these pathologies

across the brain. One prominent proposal is the network

degeneration hypothesis, which postulates that neurodegen-

erative disease pathologies expand along functional net-

works, consequently leading to failure of these networks

(Palop et al., 2006; Seeley et al., 2009). Network dysfunc-

tion then in turn likely provokes clinical symptomatology.

In the past decade, multimodal imaging studies have pro-

vided compelling evidence in support of the network degen-

eration hypothesis: a spatial overlap between the deposition

of amyloid-b plaques and neuronal networks, in particular

the default mode network (DMN), has been reported

(Buckner et al., 2005, 2009; Grothe and Teipel, 2016;

Jones et al., 2016). Similar results were obtained when

investigating the convergence between Alzheimer’s disease-

related grey matter volume reduction and large-scale net-

works (Seeley et al., 2009). Furthermore, it was suggested

that elevated amyloid-b deposition in regions of the DMN

in asymptomatic cognitively normal individuals could serve

as an indicator of incipient Alzheimer’s disease (Sperling

et al., 2009). So far, it remains unknown whether tau path-

ology similarly expands along functional networks as the

visualization of tau pathology in vivo has only recently

become available. However, the stereotypical anatomical

distribution pattern of tau pathology is indicative of mis-

folded tau proteins spreading throughout interconnected

regions (Clavaguera et al., 2009). This assumption is sup-

ported by recent findings from studies in rodent models of

early Alzheimer’s disease proposing that neurofibrillary tan-

gles may exhibit prion-like properties (Clavaguera et al.,

2009; de Calignon et al., 2012; Liu et al., 2012). These

properties may foster the spreading of tau pathology

through axons and across synapses to other neurons, po-

tentially consecutively affecting connected brain regions

and eventually leading to severe neurodegeneration that

causes cognitive impairment.

With the development of PET ligands for the visualiza-

tion of tau depositions, disease-specific distribution patterns

of tau pathology can now be detected and studied in

humans in vivo. The radioactive tracer 18F-AV-1451 ap-

pears especially useful for the visualization of separate pat-

terns of tau pathology distribution within the Alzheimer’s

disease spectrum (Ossenkoppele et al., 2016; Dronse et al.,

2017), and across different tauopathies (Passamonti et al.,

2017). To assess distinct pathways of Alzheimer’s disease-

related tau pathology based on 18F-AV-1451 PET imaging

data, the multivariate approach of an independent compo-

nent analysis (ICA) may represent a particularly well-suited

tool. ICA is a blind source separation technique used to

establish common features within a given dataset by

decomposing the data into independent patterns

(McKeown et al., 2003). ICA is based on a whole-brain

data-driven approach that is not limited to a set of prede-

fined regions of interest (Fan et al., 2008). Even though

ICA has often been used to study properties of brain net-

works based on functional MRI data (Calhoun and Adali,

2012), several studies also confirmed the utility of ICA for

the analysis of PET data (Illán et al., 2011; Di et al., 2012;

Toussaint et al., 2012; Shaffer et al., 2013; Yakushev et al.,

2013; Savio et al., 2017). For example, ICA identified dis-

tinct metabolic networks in 18F-fluorodeoxyglucose-PET

scans, which resembled known resting-state functional con-

nectivity networks (Di et al., 2012; Yakushev et al., 2013;

Savio et al., 2017).

Using ICA within the realm of structural or functional

brain imaging analyses, regions within an independent

component can be inferred to be spatially correlated

either through structural or functional connections

(Cohen et al., 2008; Di et al., 2012). However, the detec-

tion of independent components in PET imaging data does

not necessarily allow drawing of conclusions about the

functional or structural connections of the associated

brain regions within given independent components.

Consequently, systematic comparison of such components

with information on existing functional or structural net-

works is required.

Here, to gain insights into the mechanistic pathways of

tau pathology and to identify independent tau pathology

networks (TPNs), we used an ICA approach on 18F-AV-

1451 tau-PET imaging data of 22 patients with mild-to-

moderate amnestic Alzheimer’s disease. Subsequently, we

systematically assessed the relationships between the
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identified TPNs and the functional network architecture of

the brain. For this purpose, we first extracted the region of

maximum tau deposition from each of the generated TPNs.

Next, we used these regions as seeds for a seed-based rest-

ing-state functional MRI analysis in a group of healthy

control subjects (derived from the 1000 Functional

Connectomes Project). The seed-based networks were es-

tablished to identify regions of strongest connections to

the seed of tau pathology of a given TPN. We assessed

the spatial conformity of these (tau-dependent) functional

connectivity networks with the detected TPNs as well as

with established functional resting-state networks (Shirer

et al., 2012). Finally, we assessed whether higher tau

burden in the identified TPNs was associated with a more

advanced Braak stage as well as global cognitive dysfunc-

tion as assessed by the Mini-Mental State Examination

(MMSE). We hypothesized that the ICA would yield

TPNs that coincide with functionally connected networks

resembling known resting-state networks, such as the

DMN. Moreover, we assumed that increased tau burden

within distinct TPNs would be associated with a more

advanced Braak stage and negatively correlate with global

cognitive function.

Materials and methods

Participants

We included 22 patients with typical amnestic Alzheimer’s dis-
ease (Table 1) who were diagnosed with probable Alzheimer’s

disease dementia according to the recommended NIA-AA
guidelines (McKhann et al., 2011) and based on the results

of diagnostic PET imaging and CSF measurements. Of the
22 patients, 16 patients were amyloid-positive (based on

their amyloid PET scan). In addition, three patients were amyl-
oid-positive based on the assessment of their CSF. In the re-

maining three patients, diagnosis of Alzheimer’s disease was
established without assessment of amyloid status, based on

the NIA-AA guidelines. All patients underwent an 18F-AV-
1451 PET scan as part of their clinical evaluation in the

Department of Nuclear Medicine at the University Hospital
Cologne, Germany, and gave informed consent for the scien-

tific evaluation and publication of their data. Key inclusion
criteria for the patient sample were: (i) diagnosis of probable

typical Alzheimer’s disease according to the NIA-AA criteria;

(ii) age range: 455 and 480 years; and (iii) evaluable 18F-AV-

1451 scan. The study was performed according to the

Declaration of Helsinki and was in compliance with the re-

quirements of the ethics board of the Faculty of Medicine at

the University of Cologne and of the responsible local regula-

tory authorities.

PET data

The PET scans were collected from a PET-CT Siemens

Biograph mCT Flow 128 Edge (Siemens). A low dose trans-

mission scan was performed with CT for attenuation correc-

tion prior to the beginning of the PET scanning. PET scans

were acquired in list mode (15min) 90min after an intraven-

ous injection of a mean dose of 230 MBq of 18F-AV-1451.

The scans were iteratively reconstructed using a 3D OSEM

algorithm of four iterations and 12 subsets, and were

smoothed with a Gaussian filter of 5mm full-width at half-

maximum on a 128 � 128 matrix.

Resting-state functional MRI data

To identify functional networks in a group of healthy adults,

we used the publicly available resting-state functional MRI

dataset by Berlin-Margulies (Rohr et al., 2013), which is

part of the 1000 Functional Connectomes Project (http://

www.nitrc.org/frs/?group_id=296). The dataset included 26

healthy controls (13 males/13 females) aged between 23 and

44 years (mean = 29.77 � 5.21 years). The resting-state func-

tional MRIs were acquired on a 3T Trio Tim Siemens

Magnetom (Siemens). The scanning protocol was as follows:

repeat time = 2300ms, echo time = 30ms, time points = 195,

slice number = 34, flip angle = 90�, voxel size = 3 � 3 � 4mm3,

field of view = 192 � 192.

PET image preprocessing

The 18F-AV-1451 PET scans were preprocessed using

Statistical Parametric Mapping (SPM) version 8 (Wellcome

Trust Centre for Neuroimaging, Institute of Neurology,

University College London). The images were spatially normal-

ized to a tau template of a healthy control group. This tem-

plate was previously established by our group based on a

dataset of 18F-AV-1451 PET scans from 19 healthy controls

(mean age = 56.63 � 16.65 years) provided by Avid

Radiopharmaceuticals (Bischof et al., 2016; Hammes et al.,

2017). The normalized PET scans were smoothed using a

Gaussian filter of 12mm full-width at half-maximum. Using

the whole cerebellum as reference region, standard uptake

value ratio (SUVR) images were computed utilizing in-house

scripts in MATLAB R2016a (The MathWorks, Inc., Natick,

MA, USA). To assess specific Alzheimer’s disease-related tau

pathology patterns, images were z-transformed using the mean

and deviation image from a healthy control sample. A detailed

description of the sample and z-transformation can be found

elsewhere (Bischof et al., 2016). The generated z-transformed

images were then subjected to an ICA.

Table 1 Demographic characteristics

Characteristic Mean � SD Min Max

Age 66.00 � 7.22 55 75

Education 13.80 � 3.11 8 18

MMSE 24.45 � 4.38 15 30

Sex M = 14; F = 8

Race Caucasian

The range and average age in years, years of education, level of cognitive dysfunction as

assessed by the Mini-Mental State Examination (MMSE), sex distribution, and race are

listed in this table. F = female; M = male; SD = standard deviation.
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Resting-state functional MRI image
preprocessing

The resting-state functional MRI dataset was preprocessed
using the pipeline of the Data Processing Assistant for
Resting-State functional MRI (DPARSF) toolbox, version 4.3
(Yan and Zang, 2010). The pipeline consists of the following
steps: initially, the first 10 time points of each subject were
removed and the remaining slices were processed with slice
timing. Second, nuisance variables were regressed including
white matter, CSF, and global mean signal. To control for
head motion, the Friston 24 parameter model was applied
(Friston et al., 1996). Third, the realigned images were normal-
ized to the default EPI template provided by the DPARSF tool-
box. In a final step, the images were smoothed with a
Gaussian filter of 8mm. All preprocessed images were visually
checked to assure that the normalization process had not re-
sulted in distorted images. The preprocessed images were then
used for the seed-based functional connectivity analysis.

Statistical analysis

Independent component analysis

To identify independently coherent TPNs, we performed an
ICA on the z-standardized tau-PET images using the group
ICA function of the functional MRI Toolbox (GIFT toolbox,
version 4.0a, 2015; MIALAB, The Mind Research Network,
University of New Mexico, Albuquerque, NM, USA). To
avoid overfitting of the data based on the given number of
input images and to create meaningful orthogonal compo-
nents, the default setting of 20 components was reduced to
10 components (Särelä and Vigário, 2003). We then applied
the Infomax algorithm implemented in the GIFT toolbox to
extract common tau pathology features from the PET dataset.
To support our ICA approach and to evaluate the possible

influence of confounding factors that might bias the results, we
performed a series of additional analyses: we ran the ICA with
different numbers of allowed components (five and 20 compo-
nents), with a different Gaussian kernel (8mm instead of
12mm), and, in addition, an ICA including only scans from
patients who were amyloid-positive on their amyloid PET scan
(n = 16). Moreover, we conducted a conventional SPM t-test to
identify peaks of tau pathology. For this, we compared the
Alzheimer’s disease group against a group of healthy controls
(n = 19) using a voxel-based independent t-test. The identified
peaks of tau pathology were used as seeds in a following seed-
based functional MRI analysis.

Seed-based functional connectivity analysis

To assess if regions of high tau burden are involved in func-
tional connectivity networks, we conducted a seed-based ana-
lysis using the preprocessed resting-state functional MRI
dataset by Berlin-Margulies (Rohr et al., 2013). As seeds for
the functional connectivity analysis, we extracted the coordin-
ate of the maximal peak z-score from each generated TPN.
The seeds of maximum tau burden were each defined as a
sphere centred at the respective peak coordinate with a
radius of 5mm. Given that we allowed 10 components to be
generated by the ICA, we obtained 10 tau-dependent seeds,
which were submitted to the functional connectivity analysis
using the DPARSF toolbox.

Following the pipeline of the DPARSF toolbox for the func-
tional connectivity analysis, the motion parameters, white matter,
CSF, and global mean signal were regressed out. Next, the
images were band-pass filtered at 0.01–0.1Hz. To reduce the
number of comparisons for the connectivity analysis conducted
in SPM 12, we included a grey matter mask. Then, the correl-
ation of the resting-state functional MRI time series between the
respective seed and coherently active regions were computed for
each subject yielding individual functional connectivity maps for
each seed. In a last step, we conducted one-sample t-tests in SPM
12 (family-wise error, P5 0.05) comprising the individual func-
tional connectivity maps for each seed. Age and gender were
included as covariates. The SPM analyses yielded the respective
functional connectivity maps for each seed.

Evaluation of spatial overlap: Dice similarity

coefficient

To examine the overlap between the TPNs and the corres-
ponding tau-dependent seed-based networks, we next calcu-
lated the Dice similarity coefficient (DSC). The DSC is a
measure that quantifies the spatial overlap between two binar-
ized maps and is calculated as follows:

DSC ¼
2nt

nx þ ny
� � ð1Þ

where nt denotes the volume intersection between the image
volume nx and ny, which is divided by the sum of the respect-
ive image volumes nx and ny. The DSC thereby yields the
percentage-wise overlap between two maps/networks. It is in-
terpreted as follows: 50.2 reflects poor, 0.2–0.4 fair, 0.4–0.6
moderate, 0.6–0.8 good, and 40.8 near complete overlap
(Savio et al., 2017).
To calculate the DSC, we first binarized the generated t-

maps of the seed-based networks. Next, the generated TPNs
were binarized at a z-score of z4 2.0. We then compared the
spatial overlap between the TPNs and the corresponding seed-
based networks. Furthermore, to characterize the topography
of the seed-based networks, we compared these networks with
previously established functional connectivity networks ob-
tained by a resting-state functional MRI study in 27 healthy
subjects at the FIND lab of Stanford University (Shirer et al.,
2012). The Stanford networks consist of 14 networks, includ-
ing the DMN, salience network and language network, and
have consistently been used by other studies to characterize
resting-state functional connectivity networks (Lehmann
et al., 2013; Leonardi et al., 2014; Lim et al., 2014). We
quantitatively compared the spatial overlap of each binarized
seed-based network against all binarized resting-state net-
works. The resting-state network with the highest dice coeffi-
cient was chosen as best match for the seed-based network.

Relation between Braak stages and tau pathology

networks

To examine the association between tau pathology in the re-
spective TPNs and the individual Braak stage of each patient,
we extracted mean SUVRs for Braak stages I/II–VI for each
patient based on the region of interest-based Braak staging
approach previously used (Schöll et al., 2016; Hoenig et al.,
2017). Moreover, we computed the median SUVR for each
Braak stage across the patient sample. Patients, who had a
mean SUVR greater than the median, were determined to be
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positive for the respective Braak stage, whereas patients who

had a lower SUVR than the median were classified as nega-

tive. The highest positive Braak stage was used for final clas-

sification. Patients could obtain a score ranging from 2–6

(corresponding to Braak stage I/II–VI) and were grouped

into either an early Braak (score 2–3) or advanced Braak

group (stage 4–6). Finally, we compared the mean SUVRs

of each TPN between the early (n = 10) and the advanced

(n = 12) Braak group. We extracted the mean SUVRs for

the respective components based on the intensity standardized

images using the binarized component maps. As the assump-
tions for normality and homoscedasticity were not given, the
Mann-Whitney U-test was used for comparison. Results were
corrected for multiple comparison using Bonferroni correction
(*P = 0.005).

Relation between cognitive function and tau burden

in tau pathology networks

We further examined whether tau burden within distinct TPNs
was associated with global cognitive dysfunction. We used the

Figure 1 Illustration of independently coherent tau pathology networks. The respective region corresponding to the peak coordinates

of each component and the z-score range are depicted below each component. The components are projected on the Colin brain in MNI space.

Max = maximum; Med. = medial; Mid. = middle; Sup. = superior.
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MMSE as a measure of global cognitive function (Folstein

et al., 1975). Both tau burden within each component and

global cortical tau were quantified based on the individual

SUVR images using the binarized component maps and a

whole-brain cortical grey matter region of interest, respect-

ively. The extracted SUVRs for each component and for

global cortical tau burden of each patient were correlated

with the individual MMSE scores including age and gender

as covariates. The analyses were corrected for multiple com-

parisons using Bonferroni correction (*P = 0.0045).

Results

Tau pathology networks

The ICA resulted in the detection of independent TPNs,

which spatially resembled established language, frontal con-

trol, default mode, visuospatial, and hippocampal networks

(Fig. 1). Some of the TPNs showed a symmetrical bi-hemi-

spheric expansion (Components 2–4, 6, 8 and 10), whereas

the remaining components were lateralized (Components 1,

5, 7 and 9). Moreover, the TPNs were characterized by

varying loads of tau pathology (Table 2). The generated

TPNs coincided with highly functionally connected regions

predominantly involving parietal and temporal areas. The

total per cent variance explained by all 10 components was

95.7%. The topographical distributions of the TPNs are

depicted in blue in Fig. 3.

The different ICA settings revealed similar components

confirming the statistical stability of the generated TPNs.

Importantly, the ICA including only amyloid-positive pa-

tients resulted in similar components as the initial ICA

(Supplementary Fig. 4). Moreover, the conventional SPM

approach using a t-test yielded four peaks of tau path-

ology, which resembled the tau maxima detected by the

ICA (Supplementary Table 1). Further details of the add-

itional analyses can be found in the Supplementary

material.

Tau-dependent seed-based functional
networks

The tau maxima of the respective TPNs used for the seed-

based approach corresponded to the following regions:

temporal middle gyrus, precentral gyrus, precuneus, super-

ior occipital region, fusiform gyrus, posterior cingulate

cortex, cuneus, frontal medial orbital region, superior tem-

poral gyrus and parahippocampal gyrus (Table 3). The

seed-based functional connectivity analysis resulted in spe-

cific functional connectivity networks for each tau maxima.

For several seed-based analyses, the functional networks

included remote brain regions, which were not anatomic-

ally adjacent to the corresponding seed region (seed-based

networks: 1, 2, 6, 8, 9, and 10). Furthermore, the tau-de-

pendent seed-based networks were characterized by a sym-

metrical bi-hemispheric functional connectivity pattern. The

respective projections of the seed-based networks are de-

picted in red in Fig. 3.

Spatial overlap between distribution
of tau pathology and functional
networks

The comparison between the identified TPNs and the tau-

dependent seed-based functional connectivity networks

yielded moderate spatial overlap (DSC: 0.4–0.6) for

Components 3, 5 and 10 with their corresponding tau-de-

pendent seed-based functional networks. In addition, TPN

Components 1, 4, 7, 8 and 9 were fairly (DSC: 0.2–0.4)

associated with the corresponding tau-maximum seeded

functional network. Only poor overlap (DSC5 0.2) was

found between the seed-based networks and the remaining

components (Components 2 and 6). The respective DSCs

are reported in Table 4.

The comparison between the tau-dependent seed-based

networks with known resting-state functional connectivity

Table 3 Coordinates and z-scores of the tau pathology

networks

TPN Max

z-score

Coordinates AAL region

x y z

1 5.54 �60 �46 0 L temporal middle gyrus (85)

2 6.53 �48 0 46 L precentral gyrus (1)

3 5.95 8 �52 52 R precuneus (68)

4 7.11 28 �68 26 R superior occipital region (50)

5 8.06 �40 �66 �12 L fusiform gyrus (55)

6 5.10 0 �46 28 L posterior cingulate cortex (35)

7 5.32 10 �72 24 R cuneus (46)

8 3.96 6 50 �6 R frontal medial orbital region (26)

9 6.32 58 �48 16 R superior temporal gyrus (82)

10 3.93 �24 �5 �22 L parahippocampal gyrus (39)

The maximum z-score and the peak coordinates of each tau pathology network with

the corresponding brain region based on the automated anatomical labelling atlas are

listed (Tzourio-Mazoyer et al., 2002). AAL = automated anatomical labelling atlas;

L = left; R = right.

Table 2 Tau load of independent tau pathology

networks

TPN Mean SUVR (SE)

1 1.70 (0.09)

2 1.66 (0.11)

3 1.57 (0.12)

4 1.68 (0.90)

5 1.52 (0.08)

6 1.71 (0.10)

7 1.38 (0.07)

8 1.42 (0.07)

9 1.59 (0.09)

10 1.51 (0.04)

Mean SUVR and standard error (SE) for each tau pathology network are provided.
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networks yielded moderate overlap (DSC: 0.4–0.6) for

seed-based networks 3, 4, 6, 8 and 9, predominantly with

regions associated with the ventral and dorsal DMN.

Moreover, fair overlap (DSC: 0.2–0.4) was observed be-

tween the seed-based networks 1, 2, 5 and 7 and the lan-

guage, the salience, higher visual, and primary visual

network. The seed-based network 10 strongly resembled

the hippocampal network. As the hippocampal network is

not part of the predefined Stanford networks, we could not

quantitatively assess the actual spatial overlap. The respect-

ive DSCs are reported in Table 4.

Figure 2 provides an exemplary illustration of the best

overlapping TPN, the corresponding seed-based network,

and the best matching Stanford resting-state network on

a rendered brain surface. Figure 3 illustrates the spatial

resemblance between the respective components (high-

lighted in blue) and the corresponding seed-based network

(highlighted in red) and the best-matching Stanford resting-

state network (highlighted in green), respectively. This

figure further includes the DSCs for the quantification of

the spatial overlap between the respective TPNs and the

seed-based networks (first DSC) and between each seed-

based network and the corresponding Stanford resting-

state network (second DSC).

Relationship between Braak stages and tau pathol-

ogy networks

The advanced Braak group showed significantly higher

SUVRs in eight components when compared to the early

Braak group (Fig. 4). Mean SUVRs in Components 3 and 7

did not significantly differ between groups after correcting

for multiple comparison (*P = 0.005), although a trend was

observed. A summary of the U-statistics can be found in

Supplementary Table 2.

Cognitive function and tau burden in
distinct tau pathology networks

Global cognitive function was negatively correlated with

tau burden in Components 4 [r(18) = �0.496, P = 0.026],

5 [r(18) = �0.554, P = 0.011], and 7 [r(18) = �0.641,

P = 0.002]. A trend significant effect was observed for

global cognitive function and Component 3 [r(18) =

�0.440, P = 0.052]. Global cortical tau burden, assessed

based on a cortical grey matter region of interest, was

not negatively correlated with global cognitive function

[r(18) = �0.305, P = 0.190]. Exclusively, the negative asso-

ciation between global cognitive function and tau burden in

Component 7 survived correction for multiple comparison

Table 4 Dice similarity coefficient for the overlap between networks

DSC for overlap between TPN and SBN DSC for overlap between SBN and RSN

TPN 1 and SBN 1 0.39 SBN 1 and language network 0.37

TPN 2 and SBN 2 0.17 SBN 2 and salience network 0.28

TPN 3 and SBN 3 0.57 SBN 3 and ventral DMN 0.56

TPN 4 and SBN 4 0.34 SBN 4 and ventral DMN 0.42

TPN 5 and SBN 5 0.41 SBN 5 and higher visual network 0.33

TPN 6 and SBN 6 0.13 SBN 6 and dorsal DMN 0.51

TPN 7 and SBN 7 0.36 SBN 7 and primary visual network 0.23

TPN 8 and SBN 8 0.25 SBN 8 and dorsal DMN 0.55

TPN 9 and SBN 9 0.38 SBN 9 and language network 0.52

TPN 10 and SBN 10 0.46 SBN 10 and hippocampal network na

The table summarizes the quantification of the overlap between the tau pathology network and the corresponding seed-based network and the seed-based network and best-

matching Stanford resting-state network. na = not available; RSN = resting-state network; SBN = seed-based network.

Figure 2 Exemplary illustration of the distribution pattern of respective networks. The networks are rendered on the inflated Colin

brain in MNI space. Blue = TPN; Red = seed-based network; Green = ventral DMN.
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Figure 3 Illustration of networks and corresponding dice similarity coefficient. The respective tau pathology networks are illustrated

in blue, the corresponding seed-based networks in red, and the best-matching resting-state Stanford network in green. The first DSC per cell

represents the spatial overlap between the TPN and the seed-based network, the second coefficient relates to the overlap between the seed-

based and the resting- state Stanford network. All networks are projected on the Colin brain in MNI space. SBN = seed-based network.
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(*P = 0.0045). The tau maximum of Component 7 coin-

cided with cuneal regions, whereas the tau maximum of

Component 3 was located in precuneal areas, of

Component 4 in superior occipital, and of Component 5

in fusiform gyral areas.

Discussion
In the current study, we identified a set of independently

coherent networks of tau pathology in a sample of patients

with mild-to-moderate Alzheimer’s disease. This finding

supports the idea that the aggregation of tau pathology in

the brain follows several independent pathways and partly

develops coherently in different compartments of the brain.

The peaks of tau within these detected TPNs included,

among others, the precuneus, parahippocampus, and pos-

terior cingulate cortex, regions known to be involved in

various functional networks. In accordance with this, the

TPNs overlapped distinctly with seed-based functional con-

nectivity networks, some of which have previously been

reported to be impaired in Alzheimer’s disease, including

the DMN (Greicius et al., 2004; Zhang et al., 2010; Zhou

et al., 2010) and the frontal control network (Agosta et al.,

2012; Lehmann et al., 2013; Balthazar et al., 2014).

Moreover, tau burden within the TPNs was associated

with the advancement along Braak stages and global cog-

nitive dysfunction, indicating that the identified networks

may bear clinical relevance. In the following, we discuss

our findings in the context of (i) distribution of tau

pathology along independent pathways; (ii) the relevance

of TPNs in regard to disease progression and cognitive

profiles; and (iii) the relationship of these TPNs with func-

tional connectivity networks.

Properties of independent tau
pathology networks

Here, we determined a set of distinct TPNs by means of

ICA. Some of the TPNs involved regions that were not

anatomically adjacent. This is per se of interest as it indi-

cates that tau pathology does not distribute homogenously

across the brain, but importantly propagates across inde-

pendent pathways and possibly arises synchronously in dif-

ferent brain compartments at certain stages of the disease.

Interestingly, several TPNs were characterized by a sym-

metrical distribution pattern across hemispheres, whereas

some were asymmetric. This characteristic difference in

the symmetry of the TPNs may be partly attributed to

early disease stage, where tau pathology may not have

advanced to a symmetric pattern across hemispheres

within a given network, but has centred on the most sus-

ceptible regions of tau accumulation. Indeed, according to

recent models of tau propagation misfolded tau proteins

predominantly spread along the most interconnected re-

gions of the seed of tau pathology (Fox et al., 2011; Liu

et al., 2012; Menkes-Caspi et al., 2015). Thus, depending

on the stage of the disease and the anatomical location of

the seed of pathology, which may be represented by the tau

maxima of each independent component, tau distribution

Figure 4 Illustration of tau burden in each independent component for the early and advanced Braak group. Mean SUVRs and

standard error for each component are depicted for the early Braak (blue) and advanced Braak (red) group. Significant differences between groups

that survived the multiple comparison correction are highlighted in grey.
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patterns may differ in their symmetry. Moreover, the cur-

rent finding of asymmetric components accords with the

known fact that neurodegenerative disorders may start in

one hemisphere and initially spread dominantly across this

hemisphere before eventually affecting the other hemisphere

in later stages of disease (Shi et al., 2009; Claassen et al.,

2016). In this regard, the implications of using ICA as an

analysis method also need to be considered. ICA is a data-

driven approach that is based on the underlying tau path-

ology distribution of the patient sample, which in this study

consists of patients with mild-to-moderate Alzheimer’s dis-

ease. Consequently, component patterns of coherent tau

pathology can be identified that may be characterized

either by an asymmetric distribution pattern, likely reflect-

ing earlier stages of the disease, or by symmetric and bi-

hemispheric patterns, potentially reflecting a more

advanced disease stage. ICA hence defines independent re-

gional patterns of coherent tau pathology, which do not

necessarily have to be symmetric supporting the current

finding of asymmetric and symmetric component patterns.

As discussed above, ICA can determine unique disease-

specific and coherent patterns of tau pathology without any

a priori knowledge or topographic assumptions (Pagani

et al., 2016). This blind source separation technique con-

trasts conventional voxel-based statistical parametric map-

ping approaches that are often based on a priori hypotheses

regarding the cortical disease localization and require cat-

egorical distinction into significant and non-significant

voxels depending on the intensity values of the voxels.

ICA, in contrast, provides a more graduated consideration,

where significance is not based on severity but regional

coherence of pathology and thus regional interrelations.

Importantly, ICA does thereby not exclusively provide

components of highest tau pathology, but can also deter-

mine regional distribution patterns of lower pathology

load, which are nevertheless characterized by synchronous

tau pathology aggregation. In compliance with this, in the

current study the conventional SPM approach only yielded

four peaks of tau pathology, whereas by means of ICA

several additional TPNs were established. Importantly, the

TPNs identified by ICA were characterized by varying

loads of tau pathology pointing towards different suscepti-

bility of these TPNs potentially depending on the stage of

the disease. Intriguingly, the components involving orbito-

frontal and cuneal areas showed lowest tau burden. These

regions are known to be affected relatively late in

Alzheimer’s disease according to the neuropathological

Braak stages (Braak and Braak, 1991, 1995).

Interestingly, when directly assessing the relationship be-

tween the neuropathological Braak stages and the identified

TPNs, we observed that individuals in an advanced Braak

stage demonstrated higher tau pathology burden in the es-

tablished TPNs as compared to individuals at an earlier

Braak stage. This result indicates that the accumulation of

tau pathology within the identified TPNs may contribute to

the advancement along Braak stages. Moreover, in the

early Braak stage group highest tau burden was observed

in the TPN associated with the parahippocampus, whereas

the advanced Braak stage group presented highest tau path-

ology in the TPN associated with the posterior cingulate

cortex. This may suggest that distinct TPNs exist as a de-

terminant of each Braak stage. Larger data samples of early

and advanced Braak stage groups will be required to inves-

tigate this assumption further. Overall, the current findings

suggest that the differential load of tau pathology in the

independent TPNs may track the expansion of tau path-

ology at various disease stages.

In addition to the implications of the TPNs with respect

to the neuropathological Braak staging, tau pathology

within the TPN including cuneal and primary visual areas

was also associated with decreased global cognitive func-

tion. This finding points towards a specific deleterious

effect as soon as tau pathology strikes visual cortical brain

regions (Braak and Braak, 1991, 1995) underscoring the

regional specificity of a tau-cognition relationship.

Moreover, these findings are consistent with recent findings

reporting a relationship between cognitive function and re-

gional tau pathology (Brier et al., 2016; Ossenkoppele et al.,

2016; Shimada et al., 2017). To achieve a more fine-grained

characterization of distinct cognitive profiles in Alzheimer’s

disease, future studies may employ an elaborate neuropsy-

chological assessment and examine its correspondence with

the TPNs identified here. Alternatively, as atypical cases of

Alzheimer’s disease such as posterior cortical atrophy or the

logopenic variant of Alzheimer’s disease express distinct

cognitive profiles, which are dissociable from amnestic

cases, further investigations are warranted that explore

whether these clinical variants are also characterized by

variant-specific TPNs.

Overall, our results provide first evidence of independ-

ently coherent tau pathology networks, which not only

appear to track disease progression but also, at least in

part, relate to global cognitive dysfunction. Importantly,

these networks of interrelated tau deposition point towards

brain regions potentially being synchronously affected by

tau pathology during the course of the disease, providing

new insights into the mechanistic pathway of the disease.

Given that the identified TPNs differed in their topograph-

ical distribution and in the degree of tau pathology, it will

be of great interest to investigate the influence of additional

factors on the generation of these networks. In particular, a

putative synergistic effect of amyloid-b and tau pathology

may be of interest with regard to the propagation of tau

pathology along the identified networks. Moreover, inves-

tigating how the cellular, functional, and structural com-

position underlying specific networks influences the

propagation of tau pathology and thereby the generation

of these distinct TPNs will provide further information on

the pathophysiological processes underlying Alzheimer’s

disease.

Tau pathology networks in Alzheimer’s disease BRAIN 2018: 141; 568–581 | 577

Downloaded from https://academic.oup.com/brain/article-abstract/141/2/568/4791255
by Forschungszentrum Juelich GmbH, Zentralbibliothek user
on 02 February 2018



Relation between independent tau
pathology patterns and functional
connectivity networks

Some of the identified TPNs involved anatomically distant

regions, indicating that these regions may share a joint

mechanism, which could be of structural or functional

nature and which may contribute to the coherent accumu-

lation of tau pathology in these compartments. In the cur-

rent study, we focused on the role of seeded functional

connectivity in regard to in vivo tau distribution patterns

for two reasons. First, seed-based connectivity networks

include regions that show highest connectivity to the seed

and thus comply with recent models of tau propagation.

Second, functional connectivity hubs have been suggested

to be most susceptible to the development of neuropathol-

ogy (Buckner et al., 2009; Drzezga et al., 2011; de Haan

et al., 2012). From these hubs pathology may then spread

to connected brain regions (Buckner et al., 2009; Drzezga

et al., 2011; de Haan et al., 2012). Indeed, a number of

studies consistently demonstrated striking similarity and

overlap of amyloid-b plaque pathology with functional

connectivity networks (Buckner et al., 2005, 2009;

Lehmann et al., 2013; Grothe and Teipel, 2016). In accord-

ance with this, we observed tau-dependent seed-based

functional networks, characterized by a symmetrical bihe-

mispheric activation, which in part spatially corresponded

to the established TPNs.

Some of the seed-based networks resembled the salience,

the primary visual, the higher visual, the language, and the

hippocampal network indicating that tau pathology does

not exclusively distribute along one particular network.

This finding is in accordance with recently provided evi-

dence demonstrating that the Alzheimer’s disease-associated

tau pathology pattern corresponds to several cognition-rele-

vant networks (Hansson et al., 2017). Interestingly, the

majority of tau-dependent seed-based networks established

in the current study predominantly overlapped with regions

of the ventral and dorsal DMN. This suggests that the

DMN may be particularly susceptible to not only amyl-

oid-b pathology, as previously shown (Buckner et al.,

2005, 2009; Grothe and Teipel, 2016), but also to tau

pathology. Note, however, that all identified seed-based

networks overlapping with the DMN had different origins,

suggesting that the networks identified in our study may

represent subnetworks of a more superordinate network.

The existence of such subnetworks within a superordinate

network has been recently proposed (Doucet et al., 2011).

These subnetworks may differently be affected depending

on the stage of the disease and therefore, by using ICA,

several components, each with a different pathological

load, can actually belong to a more superordinate network.

Thus, directly comparing the spatial overlap between ICA-

derived patterns of tau load and an entire resting-state

network such as the DMN may not be an appropriate

comparison, as the ICA patterns may only reflect

subnetworks of the resting-state networks. Therefore, gen-

erating seed-based functional connectivity networks from

the ICA-derived patterns likely allows us to more accur-

ately compare the functional networks related to tau path-

ology distribution patterns.

Although we observed an overlap between the TPNs, the

tau-dependent seed-based networks, and known resting-state

networks, the overlap was moderate. Several aspects may

contribute to this moderate spatial correspondence. As the

seed-based functional connectivity networks in the current

study were defined based on a group of healthy young

adults, they likely differed from the functional networks pre-

sent in Alzheimer’s disease patients (Jones et al., 2016;

Teipel et al., 2016). Following the concept of tau propaga-

tion, tau pathology may no longer be able to expand along

these networks due to disease-related disconnection between

regions within a given network, changes in the location of

network hubs, or functional breakdown of the entire net-

work. Thus, the overlap between the tau-dependent seed-

based networks and the TPNs may have been moderate

due to disease-related and/or age-related changes in network

architecture. Based on the proposed prion-like mechanisms

of tau, tau pathology may propagate along reorganized net-

works that may differ from the ones identified in the young.

Furthermore, although a close link between structural

and resting-state functional connectivity has been reported

(Greicius et al., 2009), functional connectivity maps only

capture the superficial structure of regions and collapse sev-

eral subregions into one. Given that tau pathology appears

to follow synaptic connectivity (Clavaguera et al., 2009; de

Calignon et al., 2012; Liu et al., 2012), the spreading pat-

tern may depend on structural connectivity rather than

functional connectivity. It is thus possible that the overlap

between structural networks and the established TPNs is

more coherent. Future multimodal studies using diffusion

tensor imaging and functional MRI are warranted to

understand the structural and functional underpinnings

contributing to the propagation of misfolded tau proteins

within neuronal networks.

Finally, we only included patients with mild-to-moderate

Alzheimer’s disease in our current analyses. Thus, tau path-

ology in the current patient cohort may just have started to

spread from the initial seed, thereby rendering the overlap

with the corresponding seed-based network rather moder-

ate. Longitudinal studies are necessary to assess whether at

advanced stages of Alzheimer’s disease, the overlap be-

tween the TPNs and the corresponding seed-based net-

works becomes more concordant.

Despite these arguments, it appears that the functional

connections between regions, which are characterized by

synchronous oscillatory activity, may provide a pathway

contributing to the propagation of tau pathology within

distinct neural networks. Longitudinal tau-PET and func-

tional imaging data from the same Alzheimer’s disease

cohort will be necessary to establish whether the functional

coherence between regions acts as an amplifying mechan-

ism for tau pathology to spread.
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Limitations

A few limitations need to be considered when interpreting

our results. First, our analysis was restricted to a relatively

small PET dataset. Studies that include larger patient co-

horts are needed to confirm that the established TPNs are

characteristic for Alzheimer’s disease patients. Second, it

has to be noted that we used a resting-state functional

MRI dataset of young healthy controls, which was used

to establish seed-based functional networks associated

with the healthy state. Using a resting-state functional

MRI dataset of age-matched healthy older controls would

have allowed us to investigate the possible age-related pat-

tern of tau distribution along neural networks. However,

including an age-matched control sample would have

required additional PET or CSF measurements to exclude

any existing ageing-related pathology, which may have al-

ready affected (subclinically) network structures. Moreover,

we cannot exclude spill-over effects from the choroid

plexus influencing the signal in hippocampal regions.

However, given that only one component was associated

with hippocampal regions, we believe that the potential

influence was marginal at most. Finally, we used a cross-

sectional approach to assess the existence of TPNs and

their relation to functional networks. Longitudinal designs

may be better suited to explore the temporal spread of tau

pathology along functionally connected brain regions.

Conclusion
The results of this study indicate that in Alzheimer’s dis-

ease, the spatial distribution of tau pathology is not homo-

geneous but seems to progress within independent,

coherent networks. Moreover, tau pathology load in these

identified networks is associated with the advancement

along Braak stages. In addition, the independent, coherent

networks were characterized by differential distribution

patterns, which in turn partially corresponded with func-

tional connectivity networks. The relationship between

functional connectivity network and TPNs may offer new

insights into the possible mechanism of tau propagation

across brain regions. Longitudinal approaches are war-

ranted to further elucidate the temporal spreading pattern

of tau pathology across large-scale networks, which will

provide important information on the mechanisms under-

lying Alzheimer’s disease and may further inform investiga-

tion of anti-tau based treatment efficacy.
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