000842343 001__ 842343
000842343 005__ 20240619091235.0
000842343 0247_ $$2doi$$a10.1002/adbi.201700136
000842343 0247_ $$2WOS$$aWOS:000446968000002
000842343 037__ $$aFZJ-2018-00585
000842343 082__ $$a570
000842343 1001_ $$0P:(DE-Juel1)140152$$aSchnitker, Jan$$b0
000842343 245__ $$aRapid Prototyping of Ultralow-Cost, Inkjet-Printed Carbon Microelectrodes for Flexible Bioelectronic Devices
000842343 260__ $$aWeinheim$$bWiley-VCH$$c2018
000842343 3367_ $$2DRIVER$$aarticle
000842343 3367_ $$2DataCite$$aOutput Types/Journal article
000842343 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554455959_6713
000842343 3367_ $$2BibTeX$$aARTICLE
000842343 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842343 3367_ $$00$$2EndNote$$aJournal Article
000842343 520__ $$aGaining better understanding of the human brain using chip‐based devices and promoting the recovery of lost biological functionality through implants are long pursued endeavors driven by advances in material science, bioelectronics, and the advancing silicon technology. While conventional bioelectronic and neuroelectronic devices typically rely on cleanroom‐based processing, a rapid prototyping technique is proposed that is based on high‐resolution inkjet printing featuring nanoporous carbon electrodes that yield excellent cell–chip coupling. This study aims to overcome two major limitations of conventional approaches that make the development of neuroelectronic devices very challenging and limit a wider use within the research community as well as industry: high costs and lack of rapid prototyping capabilities. These challenges are addressed with an all‐printed, high‐resolution approach that makes use of flexible polymer substrates and is fabricated on a fully digital printing platform. The manufacturing of a chip consumes less than 60 min and costs a few cents per chip. This study introduces nanoporous carbon as a cell‐interfacing electrode material that features outstanding properties for extracellular recording of action potentials and stimulation indicating that the printed carbon chips have the means to be used as a versatile neuroelectronic tool for in vitro and in vivo studies.
000842343 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000842343 588__ $$aDataset connected to CrossRef
000842343 7001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b1
000842343 7001_ $$0P:(DE-Juel1)161234$$aSeyock, Silke$$b2
000842343 7001_ $$0P:(DE-Juel1)161499$$aBachmann, Bernd$$b3
000842343 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b4
000842343 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b5
000842343 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6$$eCorresponding author
000842343 773__ $$0PERI:(DE-600)2880980-4$$a10.1002/adbi.201700136$$gp. 1700136 -$$n3$$p1700136 -$$tAdvanced biosystems$$v2$$x2366-7478$$y2018
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Schnitker_et_al-2018-Advanced_Biosystems.pdf$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Manuscript-final.pdf$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Manuscript-final.gif?subformat=icon$$xicon$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Manuscript-final.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Manuscript-final.jpg?subformat=icon-180$$xicon-180$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Manuscript-final.jpg?subformat=icon-640$$xicon-640$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Manuscript-final.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842343 8564_ $$uhttps://juser.fz-juelich.de/record/842343/files/Schnitker_et_al-2018-Advanced_Biosystems.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842343 909CO $$ooai:juser.fz-juelich.de:842343$$pVDB
000842343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140152$$aForschungszentrum Jülich$$b0$$kFZJ
000842343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich$$b4$$kFZJ
000842343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b5$$kFZJ
000842343 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
000842343 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000842343 9141_ $$y2019
000842343 920__ $$lyes
000842343 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000842343 980__ $$ajournal
000842343 980__ $$aVDB
000842343 980__ $$aI:(DE-Juel1)ICS-8-20110106
000842343 980__ $$aUNRESTRICTED
000842343 981__ $$aI:(DE-Juel1)IBI-3-20200312