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We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow

of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling

between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we

choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the

so-called “conservative” and “transient” pair-potentials through which the polymers interact besides

experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to

these interactions, our polymer blobs are also influenced by the background solvent velocity field,

which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid

blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience

this frictional force opposing their motion relative to the background flow field, our fluid blobs also

in turn are influenced by the motion of the polymers through an interaction term. This makes our

technique a two-way coupling algorithm. We have constructed this interaction term in such a way

that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we

have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck

equation, which have been alternatively derived using the General Equation for the Non-Equilibrium

Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics

(SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity

updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In

cases where these fluctuations are insignificant, however, these additional terms may well be dropped

out as they are in a standard SPH simulation. We have applied our technique to study the rheology

of two different concentrations of our model linear polymer solutions. The results show that the

polymers and the fluid are coupled very well with each other, showing no lag between their velocities.

Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of

the Poiseuille flow profile typically observed for polymer solutions. Published by AIP Publishing.

https://doi.org/10.1063/1.5006627

I. INTRODUCTION

Simulating the dynamics of polymers in solution has been

a subject of continuous interest for almost three decades now,

yet a final resolution of the problem eludes us owing to its

inherent complexity. This problem poses many fundamental

questions such as how do these large polymer molecules inter-

act with the solvent fluid molecules and how do they exchange

momentum under flowing conditions? Given the enormous

size of the polymer molecules dissolved in a fluid made up

of molecules which are orders of magnitude smaller, it is

practically impossible to even simulate just tens of polymer

a)Electronic mail: v.r.ahuja@utwente.nl
b)Electronic mail: w.j.briels@utwente.nl

molecules together with all the millions of fluid molecules in

their vicinity if all of them are to be resolved down to the atomic

level. Hence, coarse-graining is an inherent part of simulating

polymers in solution.

The obvious question that arises next is what should be

the level of coarse-graining, i.e., how well do we resolve

the polymer molecules and the fluid? Very broadly speak-

ing, one can categorize the simulation techniques into two

major branches—particle-based simulations and Computa-

tional Fluid Dynamics (CFD) simulations using a continuum

approach. Since there is a plethora of techniques under each

category, we restrict the discussion here to particle-based sim-

ulation techniques, which, we might add, have the advantage

of being able to link macroscopic flow behavior to microscopic

interactions. Among the particle-based simulation techniques

0021-9606/2018/148(3)/034902/11/$30.00 148, 034902-1 Published by AIP Publishing.
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that have been used over the years to model the dynamics of

polymers in solution, there is again an enormous variety of

methods employing different levels of coarse-graining for the

polymers and the fluid. There have been studies employing

molecular dynamics (MD) for simulating polymers modeled

as a chain of a few “monomers” connected to each other with

springs in a solvent represented by a few thousand fluid parti-

cles treated as soft spheres.1,2 Hybrid models have been devel-

oped which combine two different levels of coarse-graining

for the polymers and the fluid. One such hybrid model com-

bines the MD approach for the polymer chain with the Lat-

tice Boltzmann (LB) approach for the solvent.3 Other hybrid

models combine the MD approach for the polymers with the

multi-particle collision dynamics (MPCD) or Stochastic Rota-

tion Dynamics (SRD) method for the solvent.4–10 Mesoscopic

methods like Dissipative Particle Dynamics (DPD)11–13 have

also been employed to study polymer solutions by represent-

ing the solvent with DPD particles acting as “fluid elements”

and representing the polymer molecules by a chain of such

DPD particles connected to each other with springs.14–22 More

recently, a technique called Smoothed Dissipative Particle

Dynamics (SDPD) has been developed,23,24 which is a modi-

fied version of Smoothed Particle Hydrodynamics (SPH)25–29

with added DPD-like pairwise thermal fluctuation terms. This

technique has also been used for simulating polymer solutions

in a similar way like DPD.30–32

Furthermore, there are other simulation techniques on

a much higher level of coarse-graining based on Brownian

dynamics such as Responsive Particle Dynamics (RaPiD),33,34

in which the solvent is not explicitly modeled but is rather

implicitly present and the polymer molecules are represented

by their centers-of-mass and interact through pair-potentials.

RaPiD has been used for studying various phenomena related

to polymer solutions.35–37 Recently, another technique based

on Brownian dynamics with an implicit background fluid hav-

ing hydrodynamic interactions was developed for modeling

self-developing flow of polymer solutions in the bulk as well as

in the presence of solid interfaces.38,39 As the background fluid

is implicitly present at the positions of the polymer molecules,

this technique is computationally efficient as it does not need

separate position updates for the fluid particles. Nevertheless,

the resolution of the background fluid is fixed by the concentra-

tion of the polymers and one is not free to choose an arbitrary

equation of state for the fluid. To resolve these problems, it

was envisaged that two different particles be used—one for

modeling polymers and the other for the fluid. However, this

can only be done if a proper interaction term is constructed

that not only couples the motion of the polymers and the fluid

but also conserves momentum so as to preserve long range

hydrodynamics. This is precisely what we present in this paper.

Furthermore, we have derived pairwise fluctuation terms for

the fluid using the Fokker-Planck equation so that the steady

state probability distributions of the positions and velocities

of the fluid in a quiescent state correspond to the equilibrium

distribution. We arrive essentially at the same result that has

been derived using General Equation for the Non-Equilibrium

Reversible-Irreversible Coupling (GENERIC) for an incom-

pressible SDPD fluid.23,24 However, these fluctuation terms

may be neglected if they do not play a major role in the

case being studied, under which circumstance the fluid model

reduces to standard SPH.

II. MODEL DEVELOPMENT

A. Equation of motion for the polymer blobs

Consider the motion of a mesoscopic polymer blob a dis-

solved in a solvent, alternatively referred to as the background

fluid in this work, under flowing conditions. It is well known

that for overdamped systems, the time scale over which the

particles move to any significant extent is orders of magni-

tude larger than the time scale over which their velocities get

completely thermalized. Therefore, these velocities may be

integrated out and the positions of the particles can be updated

using a first order Brownian dynamics propagator,40,41

dra = v(ra)dt +

(

Fa

ξa

)

dt + kBT
∂

∂ra

(

1

ξa

)

dt + dWr
a. (1)

We would like to emphasize that v(ra), shorthand for v(ra, t),

is not the velocity of the polymer blob a but rather the back-

ground fluid velocity at the position of polymer blob a at time

t. Fa, shorthand for Fa(t), is the driving force acting on poly-

mer blob a as a result of the interaction with other polymer

blobs, in addition to any force field that may have been applied.

In the remaining part of the paper, we will not include t in

our notation, tacitly assuming that it is implicitly present. ξa,

shorthand for ξ(ra), is the friction coefficient at the position

of polymer blob a. The third term on the right-hand side of

Eq. (1) is a drift term accounting for the spatial variation of

the friction coefficient, which we have neglected in this study

as we have assumed a constant friction coefficient for the sake

of simplicity. The last term on the right-hand side of Eq. (1),

i.e., dWr
a, is a random displacement that is uncorrelated in time

and has a magnitude that is calculated in accordance with the

fluctuation dissipation theorem, satisfying

〈dWr
adWr

b〉 = 2kBT

(

dt

ξa

)

δabI. (2)

Since the background flow field is typically not known

a priori, it must be calculated during the simulation in real time.

We calculate this background velocity field on a moving grid

of fluid blobs which serve as the node points as in a Smoothed

Particle Hydrodynamics (SPH) simulation.25–29 Since the flow

field is calculated only at a finite number of node points, the

background fluid velocity at the position of the polymer blob

a in Eq. (1) must be estimated based on interpolation. To this

end, we use the integral interpolant

v(ra) =

∫
w f (|r − ra |)v(r)d3r, (3)

where d3r is a volume element and w f (r) is a normalized

weight function with a cutoff Rc satisfying for a 3-D simula-

tion: ∫
Rc

0
4πr2w f (r)dr = 1. The superscript f inw f (r) indicates

that this is the weight function used for the fluid blobs. The

integral in Eq. (3) can be replaced by a summation running

over each of the fluid neighbors i of polymer blob a using the

standard SPH formulation
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v(ra) =

Nf
∑

i=1

w f (rai)

n
f

i

vi. (4)

Here, N f is the total number of fluid blobs and rai, shorthand

for |ra � ri |, is the distance between polymer blob a and fluid

blob i at time t. n
f

i
is the local number density of fluid blobs

at the position of the fluid blob i at time t, which is calculated

by running over each of the fluid neighbors j of the fluid blob

i using the aforementioned weight function w f (r),

n
f

i
=

Nf
∑

j=1

w f (rij). (5)

For calculating the driving force Fa in the second term of

Eq. (1), we resort to the Brownian dynamics based polymer

model RaPiD,33 in which the driving force is calculated as the

gradient of a two-part pair-potential,

Fa = −
∂

∂ra

[Φc + Φt], (6)

where Φc is the conservative potential and Φt is the transient

potential, both of which shall be defined and described in

Sec. III.

It is interesting to note that by rearranging Eq. (1), using

Eq. (5), and assuming a constant friction coefficient ξ for the

sake of simplicity, one may obtain the effective frictional force

F
pf
a acting on the polymer blob a at time t, opposing its motion

relative to the background flow field, as

F
pf
a = −ξ

Nf
∑

i=1

w f (rai)

n
f

i

(

dr∗a

dt
− vi

)

. (7)

Here, dr∗a/dt is the deterministic part of the rate of change of

the position of the polymer blob a, i.e., as calculated without

the random fluctuation dWr
a and vi is the velocity of the fluid

blob i at time t. Furthermore, it can be said that it is through

this frictional force that we essentially couple the motion of

the polymer blobs with the motion of the background fluid.

In Subsection II B, we shall refer to this frictional force to

motivate the interaction force acting on the fluid blobs due to

the polymer blobs.

B. Equation of motion for the fluid blobs

For calculating the background flow field, we use the

incompressible Navier-Stokes equation for fluctuating hydro-

dynamics,42–45 augmented with an additional interaction term

representing the force acting on the fluid due to the polymer,

Dv

Dt
(r) = −

(

∇P

ρ

)

(r) + η

(

∇
2v

ρ

)

(r) + g(r)+Ffp(r) + dWv(r).

(8)

Here, the term on the left-hand side is the material derivative

of the velocity v(r), ρ is the mass density of the fluid, η is the

viscosity of the fluid,∇P(r) is the pressure gradient, g(r) is the

acceleration due to body forces, Ffp(r) is the interaction term

which represents the force on the fluid due to the polymer, and

dWv(r) is a random fluctuation term.

Now, instead of solving the above equation on an Eulerian

grid as in CFD, we discretize the above equation on a moving

grid of fluid blobs as in SPH.25–29 Since the fluid blobs them-

selves move with the flow field, the position of a fluid blob i

can be updated using

dri = vidt. (9)

Here, once again we clarify that ri is the position of fluid

blob i at time t and vi is the velocity of that fluid blob at that

time. As a direct consequence of this, the material derivative

of the velocity can be readily calculated as the rate at which

the velocity of the fluid blobs changes in the Lagrangian frame

of reference,
Dv

Dt
(ri) =

dvi

dt
, (10)

and g(r) at the position of fluid blob i can be discretized as g(i).

For calculating the pressure gradient and the viscous dissipa-

tion term, standard SPH finite-difference-like forms29 have

been employed,

(

∇P

ρ

)

(ri) =
1

m

Nf
∑

j=1

*.,
Pi

(n
f

i
)2

+
Pj

(n
f

j
)2

+/-
dw f

dr
(rij)

rij

rij

, (11)

(

∇
2v

ρ

)

(ri) =
1

m

Nf
∑

j=1

*.,
2

n
f

i
n

f

j

+/-
dw f

dr
(rij)

vij

rij

, (12)

where vij is the velocity of fluid blob i relative to fluid blob j

and m is the mass of the fluid blobs, which is calculated as the

ratio of the mass density of the fluid ρ to the average number

density of the fluid blobs n̄f , i.e., m = ρ/n̄f .

Ffp(r) discretized at the position of the fluid blob i is

denoted by F
fp

i
, which represents the influence of the surround-

ing polymer blobs on the fluid blob i at time t. We may now

refer to the frictional force F
pf
a shown in Eq. (7) and construct

the interaction term F
fp

i
such that for each individual polymer-

fluid pair of polymer blob a and fluid blob i, the force exerted

by polymer blob a on fluid blob i is equal and opposite to

the frictional force exerted by fluid blob i on polymer blob a.

Thus, the total force on fluid blob i, calculated by summing

over the forces due to all the individual polymer blobs, would

then be

F
fp

i
= ξ

Np
∑

a=1

w f (rai)

n
f

i

(

dr∗a

dt
− vi

)

, (13)

where Np is the total number of polymer blobs. However, due

to computational reasons, which shall be explained at the end

of this subsection, we adopt a slightly modified version for the

interaction term

F
fp

i
= ξ

Np
∑

a=1

w f (rai)

n
f

i

(

dr∗a

dt
− v(ra)

)

, (14)

where v(ra) is the velocity of the fluid interpolated at the posi-

tion of polymer blob a at time t, as defined in Subsection II A in

Eq. (4). Although this means that we do not achieve pairwise

momentum conservation for the polymer-fluid interactions, we

still achieve momentum conservation on a local level in such a

way that the total frictional force exerted on any given polymer

blob a by the fluid is distributed back in its entirety to the fluid
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blobs in its local vicinity, the proof of which has been provided

in Appendix A. We can further simplify F
fp

i
using Eqs. (1) and

(14) to arrive at

F
fp

i
=

Np
∑

a=1

w f (rai)

n
f

i

Fa. (15)

We must emphasize that it is through this term that the fluid

blobs experience the influence of the polymer blobs. Thus, the

two interaction terms Fpf and Ffp essentially make this model

a two-way coupling scheme. We might add that this strategy of

redistributing the force is reminiscent of a two-way coupling

model that was developed for gas-fluidized beds.46

Combining the results from Eqs. (8), (10)–(12), and (15)

and discretizing the fluctuation term dWv(r) at the position of

the fluid blob i as a pairwise sum of random terms denoted

by dWv
ij, we arrive at the following equation that we have

used in our simulations to update the velocities of the fluid

blobs:

dvi = −
dt

m


Nf
∑

j=1

*.,
Pi

(n
f

i
)2

+
Pj

(n
f

j
)2

+/-
dw f

dr
(rij)

rij

rij

+

Nf
∑

j=1

fijvij


+ gidt +

dt

m


Np
∑

a=1

w f (rai)

n
f

i

Fa

 +

Nf
∑

j=1

dWv
ij, (16)

where f ij, shorthand for f (rij), is a symmetric function defined

as follows:

f (rij) =


−

(

2η

n
f

i
n

f

j

)

1
rij

dwf

dr
(rij) for rij ≤ Rc,

0 for rij ≥ Rc.

(17)

The pairwise velocity fluctuation terms are uncorrelated in

time and have been calculated in an anti-symmetric manner

such that dWv
ij = −dWv

ji so that the velocity updates are

momentum conserving. The properties of these momentum

fluctuations dWij have been calculated in a way that the steady

state probability distribution of the positions and velocities of

the fluid in a quiescent state yields the expected equilibrium

distribution. From a detailed derivation shown in Appendix B,

we have

〈

dWv
ijdWv

ij

〉

=

(

2kBT

m

) (

dt

m

)

fijI, (18)

〈

dWv
ikdWv

jl

〉

= 0 (ik , jl ∧ ik , lj). (19)

Notice that if instead of Eq. (14) a pairwise anti-symmetric

interaction term as shown in Eq. (13) would have been used,

then we would have ended up with an additional term pro-

portional to the product of the time step dt and the friction

coefficient ξ in the equation of motion for the fluid blobs. This

would deprive us of the whole advantage of using Brownian

dynamics for the polymers which allows us to use a larger time

step for overdamped systems where the friction coefficient ξ is

large. This is the reason for not using Eq. (13) as the interaction

term for the fluid blobs.

It is also interesting to note that if we would not have

neglected the spatial variation of the friction coefficient in

Eq. (1), then we would have had an additional term propor-

tional to ∂
∂ra

ln(ξa) in the equation of motion for the fluid blobs.

However, since this term grows only weakly with increasing

ξa, it would not affect our proposed technique significantly.

III. TEST SYSTEM AND PARAMETERS

A. The conservative potential

We have tested our technique with a model linear polymer

solution at different concentrations. We use the Flory-Huggins

potential, which has been used in the literature for describing

the conservative part of the interaction potential between the

linear polymers,35–37 defined as follows:

Φc = pkBT

Np
∑

a=1

[(
1 − φa

φa

)

ln(1 − φa) − χφa

]
. (20)

Here, Np is the total number of polymer blobs in solution as

mentioned before, Φc is the conservative potential, p is the

number of Kuhn segments in a polymer blob, χ is the solvent

interaction parameter, and φa is the local volume fraction of

polymer blobs in the neighborhood of polymer blob a at time

t calculated as

φa =
n

p
a

n
p
max

. (21)

Here, n
p
max is the maximum number density of polymers that

the system is allowed to reach, i.e., the melt density, and n
p
a is

the local number density of polymer blobs at the position of

polymer blob a calculated as

n
p
a =

Np
∑

b=1

wp(rab), (22)

where rab is the distance between polymers a and b at time

t and wp(r) is a normalized weight function with a cutoff rc

satisfying for a 3-D simulation: ∫
rc

0
4πr2wp(r)dr = 1. The

superscript p in wp(r) indicates that this is the weight function

used for the polymer blobs.

B. The transient potential

We have used the RaPiD technique to incorporate memory

effects into the simulation model through a transient potential,

which depends on the history of the interacting polymers by

keeping track of dynamic variables, given by33,34

Φt =
1

2
α

Np
∑

a,b=1

(

λab − λ
eq

ab

)2
. (23)

Here, Φt is the transient potential, α is a parameter associated

with the strength of the interactions or, in other words, the

penalty for the deviation of the dynamic variable λab from its

equilibrium value λ
eq

ab
. The variable λab, shorthand for λab(t),

is a dimensionless dynamic variable representing the degree

of intermixing of the polymers a and b, which evolves over

time based on the following first order stochastic differential

equation:

dλab = −(λab − λ
eq

ab
)
dt

τ
+ dWλ

ab, (24)

where τ is the relaxation time and Wλ
ab

is a Wiener process

with time-uncorrelated increments satisfying
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〈dWλ
abdWλ

ab〉 =

(

2kBT

α

) (

dt

τ

)

I. (25)

The variable λ
eq

ab
, shorthand for λeq(rab), is the equilibrium

value of the variable λab for the distance rab, shorthand for

rab(t), between polymers a and b at time t. For the definition

of λ
eq

ab
, we use here the following form that has been used in

the literature:35–37

λeq(rab) =

(

1 − rab

rc

)2
for rab ≤ rc,

0 for rab ≥ rc.
(26)

C. The equation of state

For the fluid, we use the commonly used pseudo-

incompressible equation of state, which is essentially a mod-

ified version of the Tait equation of state with the exponent

chosen as 7 so that it works well for water,47,48

Pi = P0


*,

n
f

i

n̄f
+-

7

− 1

, (27)

where P0 is chosen such that the velocity of sound in the simu-

lation is sufficiently large in order that the density fluctuations

are sufficiently small, which results in a fluid that resembles

an incompressible fluid.

D. Definition of weight functions
and system parameters

For the polymer blobs, we have used a normalized weight

function that has been used earlier in the literature, where the

polymer model RaPiD has been employed.35–37 It is a mono-

tonically decreasing function with derivatives up to the first

order continuous to prevent any discontinuities in the forces

which are related to the first derivative of the weight func-

tion. Furthermore, it has a non-zero derivative at the origin in

order to have a net repulsive force at zero-distance to prevent

clustering. It is given by wp(r),

wp(r) =



15

2π(r5
c−σ5)

(rc − σ)(rc + σ − 2r) for r ≤ σ,

15

2π(r5
c−σ5)

(r − rc)2 for σ ≤ r ≤ rc,

0 for r ≥ rc,

(28)

where the cutoff rc is chosen as 2.5σ. It can be easily checked

that the weight function wp(r) is normalized in 3-dimensions

within this cutoff radius rc such that ∫
rc

0
4πr2wp(r)dr = 1.

For the fluid blobs, we have chosen the normalized M4

kernel commonly used in SPH29 as the weight function. It is

a cubic spline (piecewise continuous polynomial of degree 3)

having derivatives up to the second order continuous and a

cutoff of Rc = 2h. It is given by w f (r),

w f (r) =



1
4πh3

[
(2 − r

h
)3 − 4(1 − r

h
)3
]

for r ≤ h,

1
4πh3 (2 − r

h
)3 for h ≤ r ≤ 2h,

0 for r ≥ 2h,

(29)

where h is what is commonly referred to as the support of

the weight function. Again, it can be easily checked that the

weight function w f (r) is normalized in 3-dimensions within

the cutoff radius such that ∫
Rc

0
4πr2w f (r)dr = 1.

We have chosen h = 2σ for our simulations such that the

cutoff radius Rc for the fluid blobs is larger than the cutoff

radius rc chosen for the polymer blobs because the weight

function w f (r) must be able to accurately estimate the second-

order derivatives occurring in the equation of motion for the

fluid blobs. Following the same logic, it immediately follows

that for the polymer-fluid interactions, as we do not need to

calculate any gradients, we can use the weight function wp(r)

with a smaller cutoff rc instead of w f (r) with a larger cutoff Rc

for computational efficiency. The values of the other system

parameters have been summarized in Table I.

The physical properties of the fluid, i.e., the density and

viscosity, have been chosen to be consistent with those of

water. The value of P0 has been chosen high enough to ensure

small density fluctuations and a large enough velocity of sound

cs in the simulation, which can be calculated as

cs =

√

∂P

∂ρ
=

√

7P0

ρ
. (30)

For the value of P0 that we have used, the velocity of sound

in the simulation calculated using the above equation is about

0.03 m/s. We have ensured that the velocities that we encounter

in the simulations that we have performed in this study are

much smaller than this velocity of sound in our simulation.

The length scale σ has been purposefully chosen to be

large for computational reasons so as to be able to use a large

time step as the main intention here is to show the two-way

coupling between the polymers and the fluid through our inter-

action term. Although for the fluid blobs this length scale is

reasonable as it is motivated phenomenologically using SPH,

for the polymer blobs which are motivated using a polymer

model at the mesoscopic level, it is much larger than the usual

molecular level. However, if one were to use polymers which

are much smaller, then one must also use smaller fluid blobs

because otherwise the velocity gradients of the fluid will not be

TABLE I. Summary of system parameters.

System parameter Symbol Value Unit

Length scale σ 5.0 µm

Time step dt 1.0 µs

Temperature T 300 K

Density of fluid ρ 1000 kg/m3

Viscosity of fluid η 1.0 mPa s

Resolution of fluid n̄f 1.9099 × 1015 Particles (m3)

Pressure coefficient P0 0.13 Pa

Friction coefficient ξ 1.0 × 10�7 kg/s

Strength of polymer interactions α 500 kBT

Relaxation time τ 1.0 s

Number of Kuhn segments p 300 000 . . .

Maximum number density n
p
max 1.0 × 104 C∗

of polymers

Flory-Huggins interaction χ 0.5 . . .

parameter
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accurately experienced by the polymer blobs thereby adversely

affecting the hydrodynamic coupling. This would lead to a

smaller time step and, on the other hand, if larger fluid blobs

are used, then the number of polymers required becomes very

large and we run into computational problems again as will

be described in more detail in Sec. V. Furthermore, due to the

large size of the polymer blobs, the concentration C∗, which

is calculated as the concentration at which there is on aver-

age 1 particle in a volume of a sphere of radius σ, is rather

small because this sphere is quite large. Hence, we have chosen

large values for parameters like the effective Kuhn segments p

of our polymer blob, the strength of inter-polymer interactions

α, and the maximum number density of polymers n
p
max, which

is a Flory-Huggins parameter that typically corresponds to the

melt density. For the Flory-Huggins interaction parameter χ,

we have chosen the limiting value of 0.5, above which phase

separation would occur, which is not what we aim for in this

study. Nevertheless, depending on the system being modeled,

i.e., depending on whether the solvent is a good solvent or a

bad solvent for the polymer, the value of the Flory-Huggins

parameter χ may be selected accordingly and our method of

coupling the polymer and the fluid would still work. We want

to emphasize that the term polymer blob in this paper refers

to a whole polymer molecule or even a collection of a few

polymer molecules in a single blob, which is slightly different

from the usual usage of the word blob referring to a collection

of a few monomers.

IV. RESULTS AND DISCUSSION

A. Pure fluid simulations

In this subsection, we present simulations of the pure

fluid, i.e., in the absence of the polymers. Since the equation

of motion for the fluid is based on the Navier-Stokes equa-

tion for an incompressible Newtonian fluid, we expect to see

the Newtonian behavior in the dynamic properties of the pure

fluid.

1. Equilibrium simulation

Consider a fluid blob in a sea of fluid blobs of an incom-

pressible Newtonian fluid in a quiescent state. At equilibrium,

although the mean velocity of the fluid blob is zero, at any

given instant it has a finite instantaneous velocity due to ther-

mal fluctuations. Although these instantaneous velocities are

random both in magnitude and direction, we can still say some-

thing about the distribution of these velocities and the rate at

which these velocities dissipate from the kinetic and hydrody-

namic theories, respectively. It is well known that at thermal

equilibrium, the velocities must obey the Maxwell-Boltzmann

distribution, and therefore for any given component of velocity

v0, we have

〈v20 〉 = kBT/m, (31)

where kB is the Boltzmann constant, T is the temperature of

the system, and m is the mass of the fluid blob. Furthermore,

from hydrodynamic theory for Newtonian liquids, it is known

that at short times and large wavelengths, the transverse cur-

rent correlation function decays exponentially over time and

the time constant is related to the kinematic shear viscosity

FIG. 1. Normalized transverse current correlation function for the pure fluid

at equilibrium for three different wave vectors.

of the system. So, we have calculated the transverse current

correlation function Ct(k, t) for velocities in the y-direction

and wave vectors in the x-direction (kx = kêx),

Ct(k, t) =
1

Nf

〈j̃y(kx, t)j̃∗y(kx, 0)〉, (32)

where N f is the total number of fluid blobs and the transverse

current j̃y(kx, t) is defined as follows:

j̃y(kx, t) = êy.

Nf
∑

j=1

vj(t)e
−ikx .rj(t), (33)

where rj(t) is the position of fluid blob j at time t and vj(t)

is its instantaneous velocity at that time. From hydrodynamic

theory, it is known that at short times and small k-values, the

transverse current correlation function Ct(k, t), defined above,

FIG. 2. Flow curve for the pure fluid model with and without thermal

fluctuations.

FIG. 3. Reverse Poiseuille flow profile—comparison of simulation results

with theory.
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FIG. 4. Flow curves for different con-

centrations of polymer solution showing

split-up of the various contributions to

the shear viscosity. (a) Concentration C1

= 2.5 C∗. (b) Concentration C2 = 5 C∗.

decays as follows:49

Ct(k, t) = 〈v20 〉e
−νk2t , (34)

where ν is the kinematic shear viscosity of the fluid and v0 is

the initial value of the y-component of the velocity. Combining

Eqs. (31) and (34), we have

Ct(k, t) =

(

kBT

m

)

e−νk2t . (35)

Since we need small k-values, i.e., large wavelengths in the

x-direction, we have chosen a simulation box with a length

Lx = 33.75σ in the x-direction and 10σ in the other two-

directions and three different k values of 2π/Lx, 4π/Lx, and

6π/Lx, i.e., 0.1862σ�1, 0.3723σ�1, and 0.5585σ�1, respec-

tively. As we can see from Fig. 1, there is a good match

between the simulation results and the theoretical curves, par-

ticularly for the smallest k-value at small times, as was to be

expected, indicating that the model is hydrodynamically con-

sistent. Furthermore, it ascertains that the velocity fluctuation

terms that we have derived based on the Fokker-Planck equa-

tion in Appendix B do indeed maintain the correct kinetic

temperature and that the system has the right kinematic shear

viscosity.

2. Shear flow simulations

We have performed shear flow simulations with our fluid

model for a number of different shear rates. Essentially, in

every simulation, we have maintained a constant shear rate

across the box using the Lees-Edwards technique50 and mea-

sured the average stress in the box over a period of time. From

this, we have calculated how the viscosity varies with the shear

rate as shown in Fig. 2.

We have performed these shear flow simulations using

our fluid model with thermal fluctuations as well as by turning

off the fluctuations. As we can see from Fig. 2, the viscosity

is close to the viscosity of water (1 mPa s) for the range of

shear rates that we have considered, given the parameters and

resolution of the fluid that we have used. Although the viscos-

ity does vary by about 15%, this is to be expected given the

finite resolution of the fluid typically used in SPH simulations.

More importantly, it is consistent with the viscosity that can

be interpreted from the transverse current correlation function

shown in Subsection IV A 1.

3. Reverse Poiseuille flow simulation

In this subsection, we present simulations where the shear

rate varies across the box in the y-direction as opposed to the

simulations shown in Subsection IV A 2, where there was a

homogeneous shear flow. We essentially achieve this by apply-

ing a constant gravitational force field in the x-direction in the

top half of the box and an equal and opposite field in the lower

half of the box which leads to the development of a Poiseuille

flow profile in both halves of the box. This method is what is

commonly referred to as the “Reverse Poiseuille flow” in the

literature.51 We have performed this simulation for the fluid

model with and without fluctuations and compared the results

with the analytical profile that can be calculated from a theory

based on the Navier-Stokes equation for a Newtonian fluid.

As can be seen from Fig. 3, there is a good match between

simulations and theory.

Furthermore, it can be seen from Figs. 2 and 3 that the

fluctuation terms do not affect the fluid viscosity. Hence, for

the sake of computational efficiency, we do not include the

thermal fluctuations in Sec. IV B where we have polymer blobs

as well.

B. Polymer solution simulations

For this study, we have considered an aqueous solu-

tion of a model polymer system, where the polymer blobs

interact with each other through the conservative and tran-

sient interactions formulated by the RaPiD model mentioned

in Subsections III A and III B. The model for the aqueous

solvent is the same as the one we have used in Subsec-

tion IV A but without thermal fluctuations. The polymers

and the fluid blobs of the aqueous solvent interact with each

other through the interaction terms that we have defined in

Sec. II.

1. Shear flow simulations

We have performed shear flow simulations for our model

linear polymer solutions of two different concentrations

C1 = 2.5 C∗ and C2 = 5 C∗ and the results have been plot-

ted in Fig. 4. The different contributions to the shear viscosity

due to the polymers, the fluid, and the interaction term have

TABLE II. Parameters for the Carreau model fit.

Fit parameter Symbol C1 C2 Unit

Zero shear rate viscosity η0 2.5260 6.6688 mPa s

Infinite shear rate viscosity η∞ 0.9 0.9 mPa s

Fit parameter 1 λ 3.0504 2.1408 s

Fit parameter 2 n 0.3441 0.0008 . . .
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FIG. 5. Reverse Poiseuille flow profiles

for different concentrations of polymer

solutions showing the comparison of the

polymer and fluid velocity profiles in the

simulation with the CFD profile gener-

ated using COMSOL and the analytical

Newtonian profile. (a) Concentration C1

= 2.5 C∗. (b) Concentration C2 = 5 C∗.

been shown. We have fitted the total shear viscosity flow curve

with the Carreau model, which is commonly used for polymer

solutions, given by52

η − η∞
η0 − η∞

= [1 + (λγ̇)2]
n−1

2 , (36)

where η0 is the zero shear rate viscosity, η∞ is the infinite shear

rate viscosity, λ is a parameter with units of time, and n is a

dimensionless parameter.

The fit parameters of the Carreau model that best repre-

sents the total viscosity for the two different concentrations of

polymer solutions that we have studied are presented in Table

II. As can be seen from Fig. 4, the solution is non-Newtonian

in nature and the effect is clearly significant at higher con-

centrations. This shear thinning is mainly due to the transient

interactions between the polymer blobs which are weaker at

higher shear rates.

2. Reverse Poiseuille flow simulations

We have also performed reverse Poiseuille flow simu-

lations for our model linear polymer solutions at the two

concentrations C1 = 2.5 C∗ and C2 = 5 C∗. We have compared

the results from our simulations with CFD simulations per-

formed with the commercial package COMSOL53 to which

we fed as input the Carreau model flow curve that we have

shown in Subsection IV B 1. The results have been plotted in

Fig. 5.

FIG. 6. Normalized density profile for fluid and polymer blobs for different

concentrations of polymer solutions, viz., C1 = 2.5 C∗ and C2 = 5 C∗. Note

that the density of the blobs has been normalized with the mean density of

those blobs calculated with the respective weight function in that particular

simulation.

As can be seen from Fig. 5, there is no lag between the

polymer blobs and the fluid blobs as their velocity profiles

coincide with each other, which indicates that our interaction

term couples the fluid and the polymers well. Furthermore,

our model for the non-Newtonian polymer solutions is able to

reproduce the characteristic flattening of the velocity profile, as

is evident by comparison with the parabolic Newtonian profile

particularly for higher concentrations.

Our simulations also show the cross-stream migration

phenomenon observed for polymers in solution.54 As can be

seen from Fig. 6, the concentration of water blobs remains con-

stant along the y-axis, i.e., along the gradient direction. The

polymer concentration, however, has minima at the regions

of maximum shear and maxima at the regions of zero shear.

Notice that the densities of the blobs have been normalized

with their respective mean density in that particular solution.

Therefore, the maximum concentration of the polymers in the

zero-shear region in absolute terms is higher for the poly-

mer solution with concentration C2 as compared to that for

the polymer solution with concentration C1 although it might

seem otherwise on a first glance by looking at the normalized

densities plotted in Fig. 6.

V. CONCLUSION AND SCOPE
FOR FURTHER RESEARCH

We have presented a novel technique, hereafter referred to

as Hydrodynamically Coupled Brownian Dynamics (HCBD),

which is essentially a momentum conserving two-way cou-

pling algorithm that couples the motion of polymers moving

as per Brownian dynamics with the motion of the fluid which

is calculated using the SPH methodology based on the numer-

ical solution of the Navier-Stokes equation discretized on a

moving grid of fluid particles. We have calculated fluctuation

terms for the update of the fluid velocities based on the Fokker-

Planck equation, which effectively renders our fluid model

into a discretized version of fluctuating hydrodynamics.42–45

We essentially arrive at the result for an incompressible SDPD

fluid derived using the GENERIC approach.23,24 Nevertheless,

for computational efficiency, these fluctuating terms may be

dropped out and then the pure fluid model, i.e., in the absence

of the polymers, reduces to the standard SPH formulation.

The main achievement of this study is the construction of the

interaction term between the Brownian polymer model and

the SPH fluid model. This interaction term couples the motion

of the polymers to that of the fluid without any lag and also
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conserves momentum at a local level, preserving long range

hydrodynamics.

The merits of this HCBD model as a technique for mod-

eling self-developing flow of polymer solutions can be better

understood if it is compared with a standard Brownian dynam-

ics simulation. In a standard Brownian dynamics simulation,

if the friction is to be applied with respect to a non-static back-

ground fluid, then an additional term describing the motion of

the background fluid must be added to the Brownian dynamics

propagator. However, typically the background fluid velocity

is not known a priori particularly if the fluid is flowing through

a complex geometry. Even if independent simulations are car-

ried out to determine the flow profile of the fluid, which then is

added to the motion of the Brownian propagator for the poly-

mers, there is still a lag observed between the polymers and

the fluid. More importantly, the fluid velocity profile experi-

ences no influence from the motion of the polymers, thereby

making it a one-way coupling scheme. In our HCBD scheme,

on the other hand, the fluid and the polymer are coupled with

each other through the frictional interaction term that does

not lead to any lag and makes it a two-way coupling scheme.

This enables us to model the flow of the polymer solution as

it develops in space and time. Furthermore, since our fluid

model is based on SPH, it is easy to incorporate boundary

conditions such as the no-slip boundary condition at the solid

interfaces in a similar way to what we have shown in an earlier

work.39

One of the consequences of modeling the polymers at

a mesoscopic scale while describing the fluid using a phe-

nomenological approach is that if one wishes to accurately

model the scale of the polymers, then one must also use fluid

blobs that are not orders of magnitude larger, otherwise veloc-

ity gradients of the fluid are no longer captured accurately.

This can affect the hydrodynamics of the system adversely.

Even so, if larger fluid blobs are used so that a larger time step

may be used, still the ratio between the number of polymers

and the number of fluid blobs becomes large, making the sim-

ulation computationally intensive. However, the computation

time may be substantially reduced by massive parallelization,

which in principle, our propagators allow for and it would still

be faster than an MD simulation of course as we exploit the

advantage of coarse-graining.

It is also interesting to note that if one imagines a hypothet-

ical situation in which a fluid blob is centered at the position of

the center-of-mass of each polymer blob, not necessarily the

same fluid blob at all times, then the position update for the

polymer blob and the velocity update for the fluid blob more-

or-less reduce to that of the model described in our recently

published work, in which the fluid velocities are calculated at

the positions of the centers-of-mass of the polymers and hence

no interpolation is required.38,39 In that model, it was proposed

that the force on the polymers be immediately transmitted to

the fluid, the rationality of which, in a way, has been justified

through this paper, where we indeed arrive at it through the

construction of the frictional force between the polymers and

the fluid which couples the two together. Having said that, the

model presented in this present paper has several advantages

over the earlier model such as being able to independently

choose an equation of state for the fluid through the pressure

term and being able to independently decide the resolution of

fluid irrespective of the concentration of the polymers. More-

over, although it might seem that the earlier model is more

efficient than the present model because the former model

did not have to move the fluid around separately, yet the lat-

ter model can actually turn out to be computationally more

efficient in certain cases. This is because we can reduce the

number of fluid particles in the system by choosing a resolution

independent of the concentration of the polymers limited only

by the dimensions of the complex geometry through which it

flows.

Another important point is that the methodology pre-

sented in this paper allows one to use any polymer model

of one’s choice and combine it with the SPH fluid model. The

polymer model that we have used in this study, i.e., RaPiD, has

the limitation that it does not effectively capture all the internal

dynamics of the polymer molecules but rather mainly relies

on inter-polymer interactions to produce a non-Newtonian

response like the shear-thinning behavior. However, as men-

tioned before, using our technique of coupling presented in

this paper, i.e., HCBD, one can couple the SPH-based fluid

model to any other polymer model. For instance, one could

use an extension of the RaPiD model,37 where the polymer

is not just represented by its center-of-mass alone but by a

finitely extensible non-linear elastic dumbbell that interacts

with other such dumbbells using the usual RaPiD potentials.

This would be one way of incorporating some internal dynam-

ics into the polymer model thereby more accurately modeling

viscoelastic polymeric liquids without affecting the compu-

tational efficiency too much. This provides scope for further

research on this topic.
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APPENDIX A: PROOF OF LOCAL MOMENTUM
CONSERVATION FOR THE INTERACTION
BETWEEN POLYMER AND FLUID BLOBS

Using Eqs. (4) and (14), we obtain the total force due to

polymer blob a on the fluid in its local vicinity, denoted by F
fp
a ,

as follows:

F
fp
a = ξ

Nf
∑

i=1

w f (rai)

n
f

i

*.,
dr∗a

dt
−

Nf
∑

j=1

w f (raj)

n
f

j

vj
+/- . (A1)

Simplifying the first term using Eq. (5) and rewriting the sec-

ond term as two terms, one where j = i and one where j , i,

we obtain
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F
fp
a = ξ


dr∗a

dt
−

Nf
∑

i=1

*,
w f (rai)

n
f

i

+-
2

vi

− *.,
Nf
∑

i=1

w f (rai)

n
f

i

Nf
∑

j,i

w f (raj)

n
f

j

vj
+/-
. (A2)

Rewriting the last term and simplifying, we get

F
fp
a = ξ


dr∗a

dt
−

Nf
∑

i=1

*,
w f (rai)

n
f

i

+-
2

vi

− *.,
Nf
∑

j=1

w f (raj)

n
f

j

vj

Nf
∑

i,j

w f (rai)

n
f

i

+/-
. (A3)

Using Eq. (5) and rewriting the last term, we obtain

F
fp
a = ξ


dr∗a

dt
−

Nf
∑

i=1

*,
w f (rai)

n
f

i

+-
2

vi

−

Nf
∑

j=1

w f (raj)

n
f

j

vj
*.,1 −

w f (raj)

n
f

j

+/-
. (A4)

Simplifying further and noting that two of the terms cancel

each other and replacing j with i, we get

F
fp
a = ξ

*.,
dr∗a

dt
−

Nf
∑

i=1

w f (rai)

n
f

i

vi
+/- , (A5)

which is clearly equal and opposite to the total force exerted

by the fluid on the polymer blob a, i.e., F
pf
a shown in

Eq. (7).

APPENDIX B: DERIVATION OF STOCHASTIC
UPDATE FOR THE FLUID VELOCITIES

In this appendix, we derive the statistical properties of

the velocity fluctuations dWv
jk

for the pure fluid at quies-

cent state. Although we use a different approach, we essen-

tially arrive at the same result as the velocity fluctuations for

an incompressible SDPD fluid derived using the GENERIC

approach.23,24

According to the Chapman-Kolmogorov equation, the

probability to find the system at time t + dt at the point z

in the phase space characterised by positions and velocities,

i.e., z = {r1, . . . , rN , v1, . . . , vN }, given that at t = 0 the system

was at point z0 in the phase space, is given by

G(z; z0; t + dt) =

∫
d6N z′G(z; z′; dt)G(z′; z0; t), (B1)

i.e., where z′ is any intermediate point in the phase

space, through which the system could have passed at time

t with limdt→0 G(z; z′; dt)= δ(z − z′). Going through the

usual derivation, we arrive at the following Fokker-Planck

equation:

∂G(z; z0; t)

∂t

= −
∑

i

∑

α

∂

∂ri,α

{(

vi,α
)

G(z; z0; t)
}

−
∑

i

∑

α

∂

∂vi,α


*.,
∑

j

fij

m
(vj,α − vi,α) +

Fi,α

m

+/-G(z; z0; t)

−
1

2

∑

j

∑

k

∑

l

∑

β

∂

∂vi,β


〈

dW v
ik,α

dW v
jl,β

〉

dt
G(z; z0; t)


 ,

(B2)

where α and β run from 1 to 3 corresponding to the different

Cartesian components and F i represents the force due to the

pressure gradient term,

Fi

m
=

(∇P)i

ρi

= ∇

(

P

ρ

)

i

+
Pi

ρ2
i

(∇ρ)i. (B3)

Since the standard SPH formalism for a gradient of any

property A is given by (∇A)i =

N
∑

j=1

miAi

ρi

dw
dr

(rij)
rij

rij
, we get

Fi =

Nf
∑

j=1

*.,
Pj

(n
f

j
)2

+
Pi

(n
f

i
)2

+/-
dw f

dr
(rij)

rij

rij

, (B4)

which is the form that has been shown in Eq. (11) and used

thereafter in Eq. (16).

At steady state, we expect the left-hand side of Eq. (B2) to

be zero. Furthermore, we expect that for a system in quiescent

state, the equilibrium distribution of z is given by the Maxwell-

Boltzmann distribution

G
eq(z) ∝ exp


1

kBT
Φ (r1, . . . , rN ) −

1

2kBT

∑

i

mvi · vi

 ,

(B5)

where Φ is the total potential energy based on the pressure

distribution of the system given by Φ = PV =
∑Nf

i=1
PiV/Nf ,

where N f /V may be replaced by n̄f , from which the conserva-

tive forces can be calculated as Fi = �∂Φ/∂ri. At equilibrium,

G(z; z0; t) in Eq. (B2) must be replaced by Geq(z).

We pre-calculate some of the derivatives that will be

required as follows:

∂

∂ri

G
eq(z) = −

1

kBT

(

∂

∂ri

Φ

)

G
eq(z) =

FiG
eq(z)

kBT
, (B6)

∂

∂vi

G
eq(z) = −

mviG
eq(z)

kBT
. (B7)

Notice that these imply

∑

i

∑

α

∂

∂ri,α

vi,αG
eq(z) +

∑

i

∑

α

∂

∂vi,α

Fi,α

m
G

eq(z) = 0. (B8)

Therefore, these terms will get eliminated from Eq. (B2) at

equilibrium. As a result, all remaining sums between curly

brackets in Eq. (B2) with G(z; z0; t) replaced by Geq(z) must

be identically equal to zero.

We re-write the correlations of the velocity fluctuations as

follows:
〈

dW v
ik,αdW v

jl,β

〉

= 2kBTCvv
ikαjlβdt. (B9)
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Thus, at equilibrium, we must have

∑

j

fij

m

(

vj,α − vi,α
)

+
∑

j

∑

k

∑

l

∑

β

Cvv
ikαjlβmvi,β = 0. (B10)

These equations will be identically satisfied if we choose

Cvv
ikαjlβ

= δαβ
[
(fik/m

2)δijδkl − (fki/m
2)δilδjk

]
.

Thus, in conclusion, to get the equilibrium distribution at

steady state, we must choose the stochastic variables according

to

〈

dWv
ijdWv

ij

〉

=

(

2kBT

m

) (

dt

m

)

fijI, (B11)

〈

dWv
ikdWv

jl

〉

= 0 (ik , jl ∧ ik , lj). (B12)
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32P. Español and P. B. Warren, J. Chem. Phys. 146, 150901 (2017).
33A. Van den Noort, W. K. den Otter, and W. J. Briels, Europhys. Lett. 80,

28003 (2007).
34W. J. Briels, Soft Matter 5, 4401 (2009).
35I. S. Santos de Oliveira, A. van den Noort, J. T. Padding, W. K. den Otter,

and W. J. Briels, J. Chem. Phys. 135, 104902 (2011).
36I. S. Santos de Oliveira, W. K. den Otter, and W. J. Briels, J. Chem. Phys.

137, 204908 (2012).
37I. S. Santos de Oliveira, B. W. Fitzgerald, W. K. den Otter, and W. J. Briels,

J. Chem. Phys. 140, 104903 (2014).
38J. T. Padding and W. J. Briels, J. Chem. Phys. 141, 244108 (2014).
39V. R. Ahuja, J. van der Gucht, and W. J. Briels, J. Chem. Phys. 145, 194903

(2016).
40W. J. Briels, Theory of Polymer Dynamics (Lecture Notes, Uppsala, Sweden,

1994).
41C. W. Gardiner et al., Handbook of Stochastic Methods (Springer Berlin,

1985), Vol. 4.
42L. Landau and E. Lifshitz, Statistical Physics (Pergamon Press, 1958).
43L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon Press, 1959).
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