000842369 001__ 842369
000842369 005__ 20210129232307.0
000842369 010__ $$a
000842369 020__ $$a978-3-8439-3100-7
000842369 0247_ $$2GVK$$aGVK:885310837
000842369 0247_ $$2DE-605$$a(DE-605)HT019305016
000842369 037__ $$aFZJ-2018-00610
000842369 041__ $$aEnglish
000842369 082__ $$a620
000842369 1001_ $$0P:(DE-Juel1)145740$$aSchlottke-Lakemper, Michael$$b0$$eCorresponding author$$ufzj
000842369 245__ $$aA direct-hybrid method for aeroacoustic analysis$$cMichael Alexander Schlottke-Lakemper (geb. Schlottke$$f2012-01-01 - 2017-03-22
000842369 260__ $$aAachen$$bVerlag Dr. Hut$$c2017
000842369 300__ $$axviii, 91 pages
000842369 3367_ $$2DataCite$$aOutput Types/Dissertation
000842369 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000842369 3367_ $$2ORCID$$aDISSERTATION
000842369 3367_ $$2BibTeX$$aPHDTHESIS
000842369 3367_ $$02$$2EndNote$$aThesis
000842369 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1516350592_26821
000842369 3367_ $$2DRIVER$$adoctoralThesis
000842369 502__ $$aDissertation, RWTH Aachen, 2017$$bDissertation$$cRWTH Aachen$$d2017$$o2017-03-22
000842369 520__ $$aHybrid computational fluid dynamics (CFD) - computational aeroacoustics (CAA) schemes are the standard method for aeroacoustics simulations. In this approach, it is necessary to exchange information between the CFD and the CAA step, which is usually accomplished by storing acoustic source data. This data exchange procedure, however, poses two problems when such hybrid methods are used for large-scale problems with O(10^9) degrees of freedom: Firstly, the required disk space becomes large and reaches hundreds of terabytes for a single simulation. Added to that, the parallel scalability of the overall numerical scheme is limited by the available I/O bandwidth, which typically peaks between 5,000 and 10,000 cores. To avoid these problems, a highly scalable direct-hybrid scheme is presented, in which both the flow and the acoustics simulations run simultaneously. That is, all data between the two solvers is transferred in-memory, avoiding the restrictions of the I/O subsystem. Both solvers operate on a joint hierarchical Cartesian grid, which enables efficient parallelization and dynamic load balancing, and which inherently supports local mesh refinement. To demonstrate the capabilities of the new scheme, the aeroacoustic field of a co-rotating vortex pair is computed and the flow-induced noise emissions of a turbulent, isothermal jet are predicted. The results show that the direct-hybrid method is able to accurately capture the sound pressure field and that it is particularly suitable for efficient, highly parallel simulations. Furthermore, in comparison to the classic hybrid method with data exchange via disk I/O, the novel approach shows superior performance when scaling to thousands of cores.
000842369 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842369 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000842369 588__ $$aDataset connected to GVK
000842369 650_7 $$0(DE-588)4116645-0$$2gnd$$aStrömungsakustik
000842369 8564_ $$uhttp://index.ub.rwth-aachen.de/TouchPointClient_touchpoint/perma.do?q=0%3D%222484947%22+IN+%5B2%5D&v=sunrise&l=de
000842369 909CO $$ooai:juser.fz-juelich.de:842369$$pextern4vita
000842369 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145740$$aForschungszentrum Jülich$$b0$$kFZJ
000842369 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842369 920__ $$lno
000842369 980__ $$aphd
000842369 980__ $$aEDITORS
000842369 980__ $$abook
000842369 980__ $$aI:(DE-82)080012_20140620
000842369 980__ $$aI:(DE-Juel1)JSC-20090406
000842369 980__ $$aI:(DE-Juel1)NIC-20090406
000842369 9801_ $$aEXTERN4VITA