000842413 001__ 842413
000842413 005__ 20210129232321.0
000842413 0247_ $$2doi$$a10.1007/s10811-018-1390-9
000842413 0247_ $$2ISSN$$a0921-8971
000842413 0247_ $$2ISSN$$a1573-5176
000842413 0247_ $$2WOS$$aWOS:000448700700010
000842413 0247_ $$2altmetric$$aaltmetric:31626142
000842413 037__ $$aFZJ-2018-00649
000842413 041__ $$aEnglish
000842413 082__ $$a580
000842413 1001_ $$0P:(DE-Juel1)159104$$aSchreiber, Christina$$b0$$ufzj
000842413 245__ $$aEvaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants
000842413 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2018
000842413 3367_ $$2DRIVER$$aarticle
000842413 3367_ $$2DataCite$$aOutput Types/Journal article
000842413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516700066_21759
000842413 3367_ $$2BibTeX$$aARTICLE
000842413 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842413 3367_ $$00$$2EndNote$$aJournal Article
000842413 520__ $$aAlgae are capable of accumulating nutrients from aqueous waste, which makes them a potential fertilizer. The ability of the fast growing Chlorella vulgaris strain IPPAS C1 to accumulate phosphorus (P) was probed in V-shaped plastic foil photobioreactors. The P uptake was 0.13–0.53 g(P)·m−2·day−1 when the algal culture densities were kept between 0.1 and 1.0 g(DW)·L−1 in a typical summer irradiance of Central Europe. The algal biomass can be effectively utilized for soil fertilization only if the algal cells release nutrients into the soil in a form that would be available to roots and at a rate sufficient to support plant growth. To examine this, we compared the growth of wheat, Triticum aestivum L., in two nutrient-deficient substrates: “Null Erde” and sand, with and without fertilization by wet and spray-dried algae. Plants grown in the two nutrient-deficient substrates supplemented by mineral fertilizer served as a control representing optimal nutrient supply. Plants grown in a high-nutrient substrate (SoMi 513) were used as an additional reference representing the maximum growth potential of wheat. Wheat growth was monitored for 8 weeks and measured, including the increase of the leaf area as well as shoot and root dry weight in 10 randomized replicates for each substrate and fertilization variant. After harvest, the biomass and N, P, and C contents of the plant shoots and roots were recorded. Algae fertilization of “Null Erde” led to wheat growth, including root hair production, which was similar to mineral-fertilized “Null Erde” and only slightly less vigorous than in the nutrient-rich SoMi 513 substrate. The plants grown in sand were smaller than the plants in “Null Erde” but fertilization by algae nevertheless led to growth that was comparable to mineral fertilizer. These results unambiguously demonstrate that algal biomass is a viable option for delivering nutrients to support agriculture on marginal soils.
000842413 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000842413 536__ $$0G:(BioSC)20172303$$aAF AlgalFertilizer - AlgalFertilizer (20172303)$$c20172303$$x1
000842413 588__ $$aDataset connected to CrossRef
000842413 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000842413 7001_ $$0P:(DE-Juel1)165137$$aSchiedung, Henning$$b1
000842413 7001_ $$0P:(DE-Juel1)164596$$aHarrison, Lucy$$b2$$ufzj
000842413 7001_ $$0P:(DE-Juel1)145988$$aBriese, Christoph$$b3
000842413 7001_ $$0P:(DE-Juel1)168528$$aAckermann, Bärbel$$b4$$ufzj
000842413 7001_ $$0P:(DE-Juel1)169451$$aKant, Josefine$$b5$$ufzj
000842413 7001_ $$0P:(DE-Juel1)166424$$aSchrey, Silvia$$b6$$ufzj
000842413 7001_ $$0P:(DE-Juel1)129471$$aHofmann, Diana$$b7$$ufzj
000842413 7001_ $$0P:(DE-HGF)0$$aSingh, Dipali$$b8
000842413 7001_ $$0P:(DE-HGF)0$$aEbenhöh, Oliver$$b9
000842413 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b10$$ufzj
000842413 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b11$$ufzj
000842413 7001_ $$0P:(DE-HGF)0$$aMettler-Altmann, Tabea$$b12
000842413 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b13$$ufzj
000842413 7001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai David$$b14$$ufzj
000842413 7001_ $$0P:(DE-Juel1)159592$$aNedbal, Ladislav$$b15$$eCorresponding author
000842413 773__ $$0PERI:(DE-600)1477703-4$$a10.1007/s10811-018-1390-9$$n1$$p1-10$$tJournal of applied phycology$$v30$$x1573-5176$$y2018
000842413 8564_ $$uhttps://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.pdf$$yRestricted
000842413 8564_ $$uhttps://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.gif?subformat=icon$$xicon$$yRestricted
000842413 8564_ $$uhttps://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000842413 8564_ $$uhttps://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.jpg?subformat=icon-180$$xicon-180$$yRestricted
000842413 8564_ $$uhttps://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.jpg?subformat=icon-640$$xicon-640$$yRestricted
000842413 8564_ $$uhttps://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842413 909CO $$ooai:juser.fz-juelich.de:842413$$pVDB
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159104$$aForschungszentrum Jülich$$b0$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165137$$aForschungszentrum Jülich$$b1$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164596$$aForschungszentrum Jülich$$b2$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168528$$aForschungszentrum Jülich$$b4$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169451$$aForschungszentrum Jülich$$b5$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166424$$aForschungszentrum Jülich$$b6$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129471$$aForschungszentrum Jülich$$b7$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b10$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b11$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b13$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich$$b14$$kFZJ
000842413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159592$$aForschungszentrum Jülich$$b15$$kFZJ
000842413 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000842413 9141_ $$y2018
000842413 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000842413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYCOL : 2015
000842413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842413 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842413 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842413 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842413 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000842413 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000842413 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000842413 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842413 920__ $$lyes
000842413 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000842413 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000842413 980__ $$ajournal
000842413 980__ $$aVDB
000842413 980__ $$aI:(DE-Juel1)IBG-2-20101118
000842413 980__ $$aI:(DE-Juel1)IBG-3-20101118
000842413 980__ $$aUNRESTRICTED