001     842413
005     20210129232321.0
024 7 _ |a 10.1007/s10811-018-1390-9
|2 doi
024 7 _ |a 0921-8971
|2 ISSN
024 7 _ |a 1573-5176
|2 ISSN
024 7 _ |a WOS:000448700700010
|2 WOS
024 7 _ |a altmetric:31626142
|2 altmetric
037 _ _ |a FZJ-2018-00649
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Schreiber, Christina
|0 P:(DE-Juel1)159104
|b 0
|u fzj
245 _ _ |a Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants
260 _ _ |a Dordrecht [u.a.]
|c 2018
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516700066_21759
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Algae are capable of accumulating nutrients from aqueous waste, which makes them a potential fertilizer. The ability of the fast growing Chlorella vulgaris strain IPPAS C1 to accumulate phosphorus (P) was probed in V-shaped plastic foil photobioreactors. The P uptake was 0.13–0.53 g(P)·m−2·day−1 when the algal culture densities were kept between 0.1 and 1.0 g(DW)·L−1 in a typical summer irradiance of Central Europe. The algal biomass can be effectively utilized for soil fertilization only if the algal cells release nutrients into the soil in a form that would be available to roots and at a rate sufficient to support plant growth. To examine this, we compared the growth of wheat, Triticum aestivum L., in two nutrient-deficient substrates: “Null Erde” and sand, with and without fertilization by wet and spray-dried algae. Plants grown in the two nutrient-deficient substrates supplemented by mineral fertilizer served as a control representing optimal nutrient supply. Plants grown in a high-nutrient substrate (SoMi 513) were used as an additional reference representing the maximum growth potential of wheat. Wheat growth was monitored for 8 weeks and measured, including the increase of the leaf area as well as shoot and root dry weight in 10 randomized replicates for each substrate and fertilization variant. After harvest, the biomass and N, P, and C contents of the plant shoots and roots were recorded. Algae fertilization of “Null Erde” led to wheat growth, including root hair production, which was similar to mineral-fertilized “Null Erde” and only slightly less vigorous than in the nutrient-rich SoMi 513 substrate. The plants grown in sand were smaller than the plants in “Null Erde” but fertilization by algae nevertheless led to growth that was comparable to mineral fertilizer. These results unambiguously demonstrate that algal biomass is a viable option for delivering nutrients to support agriculture on marginal soils.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a AF AlgalFertilizer - AlgalFertilizer (20172303)
|0 G:(BioSC)20172303
|c 20172303
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schiedung, Henning
|0 P:(DE-Juel1)165137
|b 1
700 1 _ |a Harrison, Lucy
|0 P:(DE-Juel1)164596
|b 2
|u fzj
700 1 _ |a Briese, Christoph
|0 P:(DE-Juel1)145988
|b 3
700 1 _ |a Ackermann, Bärbel
|0 P:(DE-Juel1)168528
|b 4
|u fzj
700 1 _ |a Kant, Josefine
|0 P:(DE-Juel1)169451
|b 5
|u fzj
700 1 _ |a Schrey, Silvia
|0 P:(DE-Juel1)166424
|b 6
|u fzj
700 1 _ |a Hofmann, Diana
|0 P:(DE-Juel1)129471
|b 7
|u fzj
700 1 _ |a Singh, Dipali
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ebenhöh, Oliver
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 10
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)129402
|b 11
|u fzj
700 1 _ |a Mettler-Altmann, Tabea
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 13
|u fzj
700 1 _ |a Jablonowski, Nicolai David
|0 P:(DE-Juel1)129475
|b 14
|u fzj
700 1 _ |a Nedbal, Ladislav
|0 P:(DE-Juel1)159592
|b 15
|e Corresponding author
773 _ _ |a 10.1007/s10811-018-1390-9
|0 PERI:(DE-600)1477703-4
|n 1
|p 1-10
|t Journal of applied phycology
|v 30
|y 2018
|x 1573-5176
856 4 _ |u https://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842413/files/10.1007_s10811-018-1390-9.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842413
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159104
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)169451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166424
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)129475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)159592
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYCOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21