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Zusammenfassun

Das Transversalfeld eines Rennbahntokamaks im Gleichgewicht

wird für Oberflächenströme und großes Aspektverhältnis über

das Biet-Savart'sche Gesetz berechnet und seine Zusammensetzung

diskutiert . Die Sprungstellen der Krümmung lassen auch die

Vertikalkomponente springen und eine Horizontalkomponente ent-

stehen . Das Mercier-Kriterium für lokalisierte Vertauschungs-

instabilitäten wird in Rennbahnachsennähe und für kreisförmigen

Plasmaquerschnitt ausgewertet und die destabilisierende Wirkung

der geraden Abschnitte sowie eines zusätzlichen Toroidalfeld-

divertors untersucht . Der Tokamakstabilitätsbereich schrumpft

zugunsten der höheren Stabilitätsbereiche, die jedoch praktisch

nicht verwendbar sind.

M D-E ui

	

um and --Stability in Racetrack Geometr

Abstract

The transverse field of a racetrack Tokamak in equilibrium is

calculated for surface currents and Zarge aspect ratio via the

law of Biot-Savart, and its structure is discussed . The dis-

continuities of the curvature lead to jumps in the vertical

component and to the appearance of a horizontal component . The

Mercier criterion for localized interchange instabilities is

evaluated near the racetrack axis and for a circular plasma

cross seetion„ and the destabilizing effect of the straight

sections and of an additional toroidal field divertor is in-

vestigated. The Tokamak stability region shrinks for the benefit

of the higher stability regions, but these are of no praetical use .
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1 . Transversalfeld eines RennbahntokamaksimGleichgewicht

1 .1 Auswirkungen der Rennbahngeorrtrie
_...eeeeeeeeeee

Bei einem gewöhnlichen Kreisbahntokamak kann man bekanntlich
Gleichgewicht auf zwei verschiedene Arten erzeugen . Ist die

Plasmasäule von einer leitenden Hülle eingeschlossen, dann kann

sie in einer gegenüber der Hüllenseele nach außen verschobenen

Lage im Gleichgewicht sein, wofür die in der leitenden Hülle

induzierten Spiegelströme maßgebend sind . Wünscht man jedoch

ein urverschobenes Gleichgewicht oder steht keine leitende

Hülle zur Verfügung, dann muß man ein zusätzliches Vertikalfeld

geeigneter Stärke und Richtung von außen anwenden . Und zwar ist

asymptotisch für großes Aspektverhältnis A =

	

das benötigte

Vertikalfeld durch die häufig zitierte Formel von Schafranov

/1/ gegeben :

-2R '
(bi 8'2

Hierbei ist

	

(a) das poloidale Feld nullter Ordnung am Plasma-

rand,

	

11 = '3 ) die innere Selbstinduktion und

das mittlere poloidale ß . Die Abhängigkeit von der

(a) Stromdichteverteilung über den Querschnitt steckt

nur in l i . Für Oberflächenströme ist 1 i = 0, für eine über den

Querschnitt konstante Stromdichte ist I i

Bei einem Rennbahntokamak sieht es grundsätzlich ähnlich aus,

nur sind die Verhältnisse wesentlich verwickelter . Die Ver-

schiebung der Plasmasäule innerhalb einer leitenden Hülle

hängt dann nicht nur vom Aspektverhältnis A und vom Längen-

verhältnis x

	

Ls
ab, sie ändert sich auch als Funktion der

Bogenlänge längs a der Rennbahn, und sie hat auch eine Komponente

nach oben oder unten, d .h . die Plasmasäule verschiebt sich aus

der Rennbahnebene heraus . Schematisch qualitativ ergibt sich

das in Fig . 1 skizzierte Bild . Die Verschiebung nach außen ist

sowohl auf den geraden als auch auf den gekrümmten Abschnitten

ungefähr konstant, auf den geraden Abschnitten jedoch um 45'

größer . Und zwar gilt in einem Oberflächenstrommodell nach

Schafranov /2/
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Dieselbe Formel mit a = 0 gilt nach Mercier /3/ in einem Volu-

menstrommodell für die Verschiebung der magnetischen Achse

innerhalb einer Plasmasäule von Rennbahnform mit Radius R 0 und

Durchmesser 2b . Es handelt sich hier um

Fig .

einen rein geometrischen Effekt, der dadurch bedingt ist, daß

die toroidalen Feldlinien auf der Innenseite der gekrümmten

Abschnitte dichter liegen als auf der Außenseite, während sie

in den geraden Abschnitten überall gleich dicht liegen . Eine

in der Nähe der Torusseele verlaufende Feldlinie muß daher

wegen der Flußkonstanz beim Übergang von einem gekrümmten zu

einem geraden Abschnitt einen Sprung nach außen machen . Um c9

zum Verschwinden zu bringen genügt es, den Sprung in den Feld-

linien des Vakuumfeldes dadurch zu beseitigen, daß man die

Feldspulen, welche das toroidale Feld längs der geraden Ab-

schnitte erzeugen, um (5' nach innen schiebt . Die Verschiebung

aus der Rennbahnebene heraus ist in den Quadraten 1 und 111

nach oben, in den Quadraten 11 und IV nach unten und betrags-

mäßig am größten jeweils an den Unstetigkeitsstellen der

Krümmung A, B, C und D . Dies wird auch durch die gepfeilte

Schraffierung der Plasmasäule angedeutet . Von der Seite gesehen

zeigt die Plasmasäule also das Bild einer liegenden Acht 00 .
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Die genauen und nicht ganz einfachen Formeln für die Verschie-

bungen im Oberflächenstrommodell findet man bei Schafranov /2/.

Eine Verallgemeinerung dieses Modells auf Volumenströme eben-

falls durch Schafranov /4/ setzt eine stetig veränderliche

Krümmung voraus und ist daher nicht ohne weiteres auf eine Renn-

bahn anwendbar . Eine drastische Änderung in den Verschiebungen

ist jedoch unwahrscheinlich.

Was nun eigentlich wieder viel mehr interessiert als die Ver-

schiebung der Plasmasäule innerhalb einer leitenden Hülle ist

eine Antwort auf die Frage, welche äußeren Felder zusätzlich

anzuwenden sind, um ein urverschobenes Gleichgewicht ohne Zu-

hilfenahme einer leitenden Hülle zu erzeugen . Das benötigte

Feld wird nicht nur eine vertikale Komponente haben, die in

den gekrümmten und geraden Abschnitten verschieden ist, es muß

auch eine horizontale Komponente auftreten, also in der Renn-

bahnebene, welche die Verschiebungen aus der Ebene heraus kom-

pensieren kann . Im folgenden soll skizziert werden, wie man im

einfachsten Fall Formeln für dieses zusätzliche äußere Trans-

versalfeld herleiten und numerisch auswerten kann.

1 .2 Modell und_aselatische Entwicklungndes i Transversalfeldeseeeee

	

e

	

__ei_ _nie_ ee.eeeeei. ..eeeeee

Vorausgesetzt wird wieder großes Aspektverhältnis, d .h.

Glieder höherer Ordnung in -A- e ;7 sind zu vernachlässigen . Die
0

Plasmasäule ist also sehr dünn, in Fig . 2a ist sie der Einfach-

heit halber sogar nur als Faden gezeichnet . Außerdem beschrän-

ken wir uns auf Oberflächenströme

	

. Innerhalb (Index i) und

außerhalb (Index e) der Plasmaoberfläche ist also mit Vakuum-

feldern zu rechnen, der Plasmadruck p ist innen konstant und

verschwindet außen . Einen Querschnitt zeigt Fig . 2b . Das

Vakuumfeld auf der Achse oder Seele der Plasmasäule sei

	

/
4 ge,o

das von den Oberflächenströmen dort erzeugte Eigenfeld sei

oe' .

	

i

	

. Dann beschreibt die Differenz , ..gn
eig e-o

	

ext ee ' mat.
die im Gleichgewicht benötigten äußeren Felder.

Bis auf Korrekturen höherer Ordnung ist damit .$>ext auch über

den ganzen Plasmaquerschnitt bekannt . Kennt man also die Felder

und Ströme im Gleichgewicht, so erhält man durch Anwendung des

Biot-Savart'schen Gesetzes
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F

	

Fi. 2b

4 s

	

Aw.9 .ir,
•

und daraus ixt . Dabei bezeichnet

	

den A .fpunkt, für § = 0

also einen Punkt auf der Achse, und bezeichnet den Integra-

tionspunkt auf dem Plasmarand . In nullter Ordnung hat man ein-

fach ein zylindrisches Plasma, und die Felder sind

	

yt4) .21-

	

-s

	

4

	

9

4a 4(-;te,

0
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Ein TransversalfeldeLlt existiert hier nicht . Die Gleichgewichts-

bedingung ist

	

2 0 .t

	

-27gz,) 	 e	 (1 .5)
o

wobei ß = 2 p/B
2
(a) das poloidale ß ist.

In erster Ordnung werden die Zylinderflächen des Koordinaten-

systems (,4m,,.S) gekrümmt . Die Krümmung der Achse ist k(s)

	

auf den gekrümmten

	

Abschnitten und k(s)

	

0 auf den geraden

Abschnitten . Fourierreihenentwicklung bezüglich der Bogenlänge

s liefert

	

k7s,J-

	

k e

für gerades n = 2 m

für ungerades n

mit

Das Längenelement im gekrümmten Koordinatensystem ist

'res

	

(4- 4 kg,

	

44-

das Flächenelement also d = a(I-k(s) a cos 40) du)ds.

Die Felder lassen sich als Vakuumfelder aus einem Potential ab-

leiten, d .h .0ä= - V:r mit 2173 = 0 . Schafranov /2/ löst die Po-

tentialgleichung und das Gleichgewichtsproblem im

	

gekrümmten

Koordinatensystem in erster Ordnung in k „ , wobei als Grenzbe-

dingungen an der Plasmaoberfläche wie üblich Druckgleichgewicht

und Verschwinden der Normalkomponente des Feldes benutzt werden.

Mit einem Fourieransatz für das Potential erster Gleichung wird

etw
0

	

iw
4ie = 04'e Oie

	

.ee'e e
-00

wobei die ni e über modifizierte Besselfunktionen von

	

abhängen

und proportional Je". sind . Hieraus folgen durch Gradientbildung

die Felder 4' , die Oberflächenstromdichte

	

= eg x 4ee1,e
und das Eigenfeld eg-eig gemäß (1 .3).

Die Zwischenrechnungen sind in Anhang A näher ausgeführt.

Wir betrachten zunächst den Fall eines Kreisbahntorus mit

k(s)

	

konst . Dann ist x - 0, r e y, T

	

0, k no o = 0, und
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das Vertikalfeld schreibt sich

	

durch Vereinfachung aus

(1 .16),(1 .17),(1 .18),(1 .27)

	

bis auf Glieder höherer Ordnung

in n R - in folgender Form:

Dabei ist

	

= .Adie Binormale, in Fig . 2a gestrichelt, und J

ist das Integral
#or 74--eo.t

-.er [4-e .274-co.f7 1

Wir betrachten dieses Integral asymptotisch für große A . Man
1	

könnte es für

	

= 2 A el mit Hilfe der asymptotischen Entwick-

lungen von elliptischen Integralen berechnen . Dieses Verfahren

läßt sich aber nicht auf den Fall einer Rennbahn verallgemei-

nern . Daher wählen wir einen direkten Weg . Sei E«12«1,

le-+O,

	

>o0 . Wir zerlegen das Integral in einen Anteil,

der von der Wirkung der Plasmaoberflächenströme in unmittelba-

rer Nähe des Aufpunktes y 0 herrührt, und in einen Anteil,

der zur restlichen und weiter entfernt liegenden Plasmaober-

fläche gehört . 4 .yr,

	

,
.S"ee,

‚r, (A - '2 # 4-J;»

	

'?/,„t

	

S (e +,s/ey
- -ei

	 wirr	 	

ei
'ZO, _	 -#

S

	

..Je « ahd.

'tu)4

	

(6' 4(i44 ..s.;Jn-..t..f;a>7

Asymptotisch wird also
74ear

	

,

	

e

(EJ4 u 4)JZZ

	

3 «,ef e 29-7/.z,

et

und

	

S

	

/ke

Damit haben wir

	

-

	

4,7

	

* );e <SA

„ele)e -/
3..2 e,

(1 .9)

(1 .10)
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und aus (L9 folgt

2.'

	

eg eo) 4",
(1 .1S)

Dies stimmt mit der Shafranov-Formel (1 .1) überein, wenn man

dort l i = 0 berücksichtigt . Der logarithmische Terz hängt offen-

bar mit der toroidalen Krümmung der Plasmaoberfläche in der Nähe

des Aufpunktes zusammen.

Nunmehr können wir zum Transversalfeld des Rennbahntorus über-

gehen . Für den Aufpunkt genügt es aus Symmetriegründen, sich

auf den ersten Quadraten zu beschränken, also 0‘,s
oder O g y 4 1 (1+x) . Der Integrationspunkt dagegen läuft selbstverständ-

lich über die ganze Torusoberfläche, also O‘s'‘ L oder 0y' 2 '(1+x) . Für

das Transversalfeld egel ergibt sich aus .Anhang A zunächst (gedacht ist immer

an die Torusachse= 0):

-'"	 	
( y T(4»/74fl))

	

(1 .16)g2,j .	 fei «, '

e,2'Re

Die einzelnen Summanden werden im folgenden etwas näher betrachtet . Es ist

z,t/,y) -

	

- 41 ,ge h(y)

fr„,;t

	

y),--

	

/ o

	

tu,-

	

(1 .1 7)

Für die Krümmung an der Unstetigkeitsstelle nimmt man zweck-

mäßigerweise das arithmetische Mittel des rechts- und links-

seitigen Grenzwertes an . Weiter ist

#/4#4
ei 4-eies/9i- m) ,l-eas90- /( ri-i-)

/jhl„A)
_ 74,,) [A- 2f4-ees i/r''- )

	

(7-/TJ2J7e-e rosr-roJ5A 7'-r * -

Dabei sind

	

und T in Fig . 2 erklärt, und gestrichene Größen

beziehen sich auf die Integrationsvariable . Analog dem Kreis-

bahnfall betrachten wir die Nachbarschaft des Aufpunktes y

wieder gesondert und zerlegen das Integral gemäß

x-Ax ye

	

,e-/4v,.ej

-m 4 7 7 7#A7

(1 .19)
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Wir nehmen an, daß entweder y T - ye y	 oder yd).',e T+hy
ist . Hierzu wählen wir

	

y einfach als die Schrittweite, mit

der y bei der numerischen Rechnung verändert wird . Dann gilte
-fecdes(

(1 .20)

	

o

	

40.A.,zeisrpee."

Das Auftauchen der Sprungfunktion S(y) weist wieder auf die

Abhängigkeit von der toroidalen Krümmung in der Nähe des Auf--

punktes hin . Falls nämlich das Integrationsintervall ganz im

gekrümmten Teil der Rennbahn liegt, verschwinden T und T.

Falls es ganz im geraden Teil liegt, ist r e r'

	

:2 und der

Zähler des Integranden verschwindet . Und falls y auf die Un-

stetigkeitsstelle fällt, bleibt aus den gleichen Gründen nur

das halbe Integral übrig . Gegenüber J 1 in (1 .11) ist also

durch y/2 zu ersetzen, und asymptotisch folgt entsprechend

wie früher

- /7'1 cm- + 47 4,

	

,Z

	

(1 .21)

In den beiden anderen Integralen J0 und J 2 ist wieder A -2 zu

vernachlässigen, im Unterschied zu früher ist aber die Inte-

gration nicht mehr analytisch, sondern nur noch numerisch

durchführbar . Wir haben also

-,44, sA 4- 41 -$,Y),Z,#y-d'

ef- toi

	

) eds

cos/'r'- t/rcigs

	

(oseW

	

7-e(

	

) 4

	

. . .

	

.22)
7e

	

Da 21y im Gegensatz zu

	

nicht wirklich gegen null gehen kann,

entsteht bei der numerischen Auswertung ein unbedeutender Feh-

ler, im Falle der Kreisbahn z .B . ist die Abweichung von der

Schafranov-Formel nur

A

	

-6'

	

27'
-

	

- Y *

	

7' - 47

	

-

	

(1 .23)

was einer Aufteilung des Viertelkreisbogens in 100 gleiche Ab-

schnitte entspricht . Für den dritten Summanden in (1 .16) er-

gibt sich zunächst



/7/)5 44 a z,

(1 .24)

Dieser Term rührt unmittelbar von den Gleichgewichtsfeldern

erster Ordnung in (1 .8) her und hängt über die Fourierkoeffi-

zienten kn wesentlich vom globalen Verlauf der Krümmung ab.

Das Argument der modifizierten Besselfunktion 1 1 ist dabei

..‘79)-,„ a n
61'4

	

A/44x)
(1 .25)„.4‚, ez,,

roj;b,x- 41- Sind,#x'

und 1 1 ' bezeichnet die Ableitung nach dem Argument . Für n

	

0

erhält man das zugehörige Reihenglied durch formalen Grenzüber-

gang ne-+O . Um die Abhängigkeit von den verschiedenen Parame-

tern, insbesondere dem Sicherheitsfaktor

0

	 ez	 -jse	
9 'j-''

	

L-B:

	

7-fex)-ew e"gz)

	

At'-A-r#Ze'a) (
.26)

besser hervortreten zu lassen, formen wir (1 .24) mit Hilfe der

Gleichgewichtsbedingung (1 .5) um, wodurch B si ° eliminiert wird,

und erhalten
#ge

	

A?ej(
-- k,,t[4#n

	

4-:A4,7974#x)
1-eide ..oo

e',teV7i
(4-A-9e)9

	

z4

	

49 ny

	

....-47:,42/49

	

4 1°''niT

,f d A74e"» (1 .27)

Asymptotisch für große A ist aber I-ß gegenüber q2A2(I4- .) 2 zu

vernachlässigen . Dann läßt sich offenbar eine Reihe abspalten

mit I-ß als Faktor, während die übrigbleibende Reihe kein ß
mehr enthält . Sollte sich also ß während der Entladung ändern,

genügt es, den abgespaltenen Teil des Transversalfeldes nach

Maßgabe des Faktors 1-ß anzupassen . Weiterhin ist es zweckmäßig,

die Reihensummationen dahingehend zu ändern, daß man die



Glieder mit positiven und negativen n paarweise zusammenfaßt,

so daß nur noch über positive n zu summieren ist . Da nur die

geraden Koeffizienten k n = k2m _ mR	 sin

	

von null ver-

schieden sind, genügt schon eine Sumzation über m . Schließlich

läßt sich I 1 ' noch durch I o und I 1 ausdrücken . Wir können dann

die so abgeänderte Reihe (1 .27) zusammen mit (1 .22) und (1 .17)

in (1 .16) einsetzen und erhalten das endgültige 2e )

1 .3 Diskussion der analtischen.ua d numerischen Ergebnisse

Für das gesamte Transversalfeld ergibt sich die folgende

übersichtliche Zerlegung:

4	

e. 1
	 l ( ) 7» x,

	

, x/A_eiweg
(h '5 47))

-~-
mit

	

'

	

(-

	

)

4/ S*'
2'-4f 4- coif	 )#

	

'(r	r

c il ) #os
f

C .e (rz71 ( 7 34[2 f4
/4#x)

1~ )
+

	

#J/)/ m	 2
7 _ !

	

41 ,1 	 	 4 	449"za z ,S/‚4„‚ex «t.f '217)
0,4

	

.2 "A r A	 ' )	 ~~f )	

	

444-,4 »4

	

,	 	 ‚f99e
f

	

y4/i)

	

2

	

4/4)
ä 4

	

j. ,

i . ;

	

(1 .28)

Für x = 0 bleiben von

	

=

	

y nur 1 und der erste (m = 0)

Term von 3 übrig, d .h . das Rennbahnfeld reduziert sich wieder

auf das Kreisbahnfeld (1 .15), 1 hängt offensichtlich von der

lokalen toroidalen Krümmung ab und 2 beschreibt Korrekturen

zu/ 1 , die durch die wechselseitige Beeinflussung der gekrüm .m.-
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ten und geraden Abschnitte erzeugt werden . Dagegen ist der
I-ßerste Term mit 777 von S3 mit der mittleren toreidalen Krümmung

verknüpft und die Reihen in 3 und 4 stellen die zugehörigen

Rennbahnkorrekturen dar . Hier tritt auch die vorhergesagte

Horizontalkomponente des Transversalfeldes auf . Sie verschwin-

det in der Mitte der geraden und gekrümmten Abschnitte bei

y = 0 bzw . y - 4 (1+x) und sie ist am größten in der Nachbar-

Schaft der Unstetigkeitsstelle y = -7 , ganz entsprechend wie

die Vertikalverschiebung in Fig . 1 . Man sieht, daß man die ge-

raden und gekrümmten Abschnitte niemals für sich allein be-

trachten darf, sondern wegen der starken Wechselwirkung immer

nur die Rennbahn als ganzes.
11 '

	l

	

J

	

;-4 '	 ,"724

	

44.r-;,

I

	

°i

	

'i

	

:

	

: ',•-+

'
	 li	



1 4

ß 0, q = 2, A = 3 .5, hi'---.
,f2 4 f3 .

0 0 .207 0 .634 0 0.091 0 -1 .900 0

10 0.210 0 .634 -0 .019 0 .091 0 .005 -1 .897 -0 .015

20 0.217 0 .636 -0 .038 0 .091 0 .009 -1 .888 -0 .030

30 0.25-2 ,
0 .638 -u .u5/ 0 .090 0 .012 -1 .872 -0 .045

40 0.254 0 .642 -0 .076 0 .089 0 .013 -1 .848 -0 .064

50 0.287 0.646 -0 .095 0 .087 0 .006 -1 .812 -0.089

60 0 .335 0 .652 -0.113 0 .085 -0 .020 -1 .760 -0 .133

70 0 .410 0.658 -0 .131 0 .079 -0 .101 -1 .685 0 .232

80 0.538 0.666 -0 .149 0.067 -0 .327 -1 .561 -0 .476

90 0.802 0 .674 -0 .166 0.037 -0 .908 -1 .320 -1 .074

91 0.845 0 .675 -0 .168 0 .032 -0 .995 -1 .280 -1 .163

92 0.896 0 .676 -0 .170 0 .026 -1 .087 -1 .235 -1 .256

93 0.953 0 .677 -0 .171 0 .020 -1 .183 -1 .182 -1 .354

94 1 .021 0 .677 -0 .173 0 .013 -1 .282 -1 .120 -1 .455

95 1 .103 0 .678 -0 .175 0 .006 -1 .383 -1 .045 -1 .558

96 1 .206 0 .679 -0 .176 -0 .003 -1 .483 -0 .950 -1 .659

97 1 .340 0.680 -0 .178 -0 .012 -1 .578 -0 .824 -1 .756

98 1 .534 0.681 -0 .180 -0.022 -1 .662 -0 .639 -1 .842

99 1 .870 0.682 -0.182 -0.033 -1 .730 -0 .313 -1 .911

1( 0 -0 .659 0.683 -0.183 -0.046 -1 .759 -1 .438 -1 .942

101 -3 .189 0.684 -0 .180 -0 .058 -1 .730 -2 .563 -1 .910

102 -2 .851 0 .685 -0 .176 -0 .069 -1 .663 -2 .236 -1 .839

103 -2 .658 0 .686 -0 .172 -0 .080 -1 .579 -2 .052 -1 .751

104 -2 .523 0 .687 -0 .169 -0 .089 -1 .485 -1 .925 -1 .653

105 -2 .420 0 .688 -0.165 -0 .097 -1 .386 -1 .830 -1 .551

106 -2 .338 0 .688 -0.161 -0.104 -1 .285 -1 .754 -1 .447

107 -2 .270 0.689 -0.158 -0.111 -1 .186 -1 .691 -1 .344

108 -2 .212 0 .690 -0 .154 -0.117 -1 .090 -1 .639 -1 .245

109 -2 .161 0 .691 -0 .151 -0.123 -0 .999 -1 .593 -1 .150

110 -2 .117 0 .692 -0 .147 -0 .128 -0 .912 -1 .553 -1 .059

120 -1 .853 0 .698 -0 .111 -0 .158 -0.336 -1 .312 -0 .446

130 -1 .731 0 .703 -0 .074 -0 .169 -0.113 -1 .197 -0 .187

140 -1 .673 0 .706 -0 .037 -0 .174 -0.033 -1 .141 -0 .070

150 -1 .657 0 .707 0 -0 .175 0 -1 .124 0

In 8A) S(y) = -2 .832 S(y), x = 0 .5

*lt



Die Formeln (1 .28) sind zunächst für ß = 0, q = 2, A e 3 .5

und verschiedene x numerisch ausgewertet worden . Selbstver-

ständlich können bei Bedarf auch andere Parameter für die

Rechnung benutzt werden . Die Ergebnisse für x = 0 .5, wofür

also die geraden Abschnitte halb so lang sind wie die gekrümm-

ten, zeigt die Tabelle auf Seite 14 . Als unabhängige Variable

wird ,rr

	

222--X verwandt, so daß die Unstetigkeitsstelle dem
- 2r

Wert
EL

= 100 entspricht . Das in der letzten Spalte stehende

Gesamtfeld

	

ist in Fig . 3 noch einmal graphisch dargestellt.

Die Orientierung der Feldkomponenten in Richtung von 4 und

ist zu erwarten, wenn die Verschiebungen der Plasmasäule von

Fig . 1 nach außen und nach oben kompensiert werden sollen.

Auffällig ist, daß das Horizontalfeld in der Nähe der Unstetig-

keit der Krümmung überraschend groß wird und daß das Vertikal-

feld dort einen gewaltigen Sprung macht . Dieser Sprung ist je-

doch unrealistisch und hängt damit zusammen, daß die nur für

sehr große A asymptotisch gültigen Formeln für ein relativ

kleines A ausgewertet werden . In Wirklichkeit muß der Feldsprung

ausgeglättet werden, so daß Abweichungen etwa in einem s-Inter-

vall von der Größenordnung des Plasmadurchmessers 2a zu beiden

Seiten der Unstetigkeitsstelle der Krümmung auftreten, oder für

A = 3 .5 umgerechnet etwa im Intervall 80_4, 131 4_120 . Dieser

Glättungseffekt ließe sich grundsätzlich bei der Ausführung

aller im Laufe der Rechnung vorkommenden Integrationen ent-

sprechend berücksichtigen und würde auch S(y) in

	

(1 .17)

stetig machen . Es müßte sieh dann für das Vertikalfeld etwa die

gestrichelte Tangente in Fig . 3 ergeben, die bemerkenswerter-

weise genau durch den berechneten Funktionswert an der Unste-

tigkeitsstelle geht . Solche Änderungen wären jedoch mit be-

trächtlichem Aufwand verbunden und liefen überdies auf die

Berücksichtigung von Termen höherer Ordnung hinaus, die ja

ansonsten wie auch in der Schafranov-Formel stets vernach-

lässigt werden . Insofern ist die Berechnung des Transversale

feldes für einen Rennbahntorus wegen der Unstetigkeit in der

Krümmung noch nicht voll befriedigend . Für die praktische

Erzeugung des berechneten Transversalfeldes könnte man evtl . die Dinol-

felder von zwei helisch gewundenen Leiterpaaren einsetzen, die einander

in Abhängigkeit . von der Bogenlänge verstärken oder schwächen, um. auf der
Rennbahnseele ein Feld der gewünschten Stärke und
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Richtung hervorzurufen . Zwei weitere Leiterpaare wären vermut-

lich für den ß-abhängigen Anteil 4 erforderlich.

2 . Einfluß der Rennbahnkonfiguration auf das Stabilitätsverhalten

2 .1 Kriterien für lokalisierte Instabilitäten
eeee_eeeeeee

Wir betrachten im folgenden nur lokalisierte MHD-Instabilie

täten in der Nähe der magnetischen Achse und für einen kreis-

förmigen Querschnitt der magnetischen Flächen . Lokalisierte

Vertauschungs- oder "Flute"-Instabilitäten werden im Falle

eines zylindrischen Plasmas oder eines sehr schlanken Torus

durch das Suydamkriterium /5/ beschrieben, d .h.

„A6 2

ist notwendig und hinreichend für Stabilität gegen lokalisierte

Störungen . Im Kreisbahntorus mit Umfang

	

ds = L.0 = 2 .eR o ver-

wendetwendet man anstelle von /u

	

die Rotationstransformation
LoB9

	

rBz

	

B
oder auch °e =

	

. Da sich der erste Term
rBs

	

21e

	

rB s
im Kriterium (2 .1), welcher die stabilisierende Wirkung der

Verscherung ausdrückt, bei Annäherung an die magnetische Achse

wie r 2 verhält, der zweite Term hingegen wie r° (nicht r1 wie

bei Schafranov /6/ angegeben), ist ein zylindrisches Plasma in

der Nähe der magnetischen Achse immer instabil, wenn p« 0.

In einem Tokamak hat man Ar4,1 oder der Sicherheitsfaktor

q

	

I . Das Suydamkriterium ist dann durch das Mercierkrite-

rium /7/ zu ersetzen, welches für kreisförmigen Plasmaquer-

schnitt und Axialsymmetrie die einfadle- Gestalt /6/:

11- 72

	

74-7-9 > 0,..5

	

(2 .2)

annimmt . Jetzt ist q

	

1 hinreichend für Stabilität gegen lo-

kalisierte Störungen, und diese Bedingung fällt formal mit dem

Kruskal-Schafranov-Kriterium für helische "Kink"-Instabilitäten

zusammen . Wir sehen dabei von dem Sonderfall ab, daß der Druck

auf der Achse ausnahmsweise kein Maximum, sondern ein Minimum

hat, was die Rolle der stabilen und instabilen Bereiche in
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(2 .2) vertauscht . Man beobachtet also, daß erstens die Umgebung

der magnetischen Achse am schwersten zu stabilisieren ist, weil

dort die Verscherung keine Rolle spielt, und daß zweitens eine

Stabilisierung dieser Umgebung im Sinne des Mercierkriteriums

sogar auf Stabilität des Plasmas gegen KinkeInstabilitäten

schließen läßt . Der Zusatzfaktor 1- q 2 kommt dadurch zustande,

daß sich die magnetische Achse nach außen in Gebiete schwäche-

ren toroidalen Feldes verschiebt, was einen magnetischen "well"

(Topf, Mulde) entstehen läßt . Es ist nicht klar, ob das Zusam-

menfallen der Stabilitätsgrenzen für lokalisierte und Kink-

Moden auch noch für von der einfachen Kreisbahn abweichende

Formen der magnetischen Achse richtig bleibt . Jedenfalls ist

das Mercierkriterium, vor allem in der Umgebung der magnetischen

Achse, eine ziemlich strenge Bedingung, und es ergibt einen Sinn,

beliebig geformte magnetische Achsen mit Hilfe des lokalen

Kriteriums zu untersuchen . Wir fragen also nach einer geeigne-

ten Verallgemeinerung der für gewöhnliche Tokamaks geltenden

Stabilitätsbedingung , 2 )1, wenn die Krümmung der magnetischen

Achse nicht mehr konstant, sondern beliebig variabel ist . Das

Gleichgewicht ist dann nicht mehr axialsymmetrisch, sondern

kann z .B . Rennbahnform haben . Denkbar wäre auch eine räumliche

Krümmung oder Torsion, z .B . ein Figur-8-Stellarator, wir wollen

uns aber im folgenden nur auf ebene Konfigurationen beschränken.

2 .2 Stand der Theorie für nichtaxia1smmetrische ebene Konf igurationen

mit kreisförmigem Quersdulitt

Eine sehr allgemeine Theorie für beliebig gekrümmte

toroidale Plasmen mit elliptischem Querschnitt stammt von

Mercier /3,8/ . Vorausgesetzt wird, daß der Plasmaradius at klein

ist gegen den Krümmungsradius R(s), sagen wir von der Ordnung g.

Dann muß auch die Verschiebung S(s) der magnetischen Achse

gegenüber der geometrischen Achse der Plasmasäule verglichen

mit a von der gleichen Ordnung L klein bleiben, und es wird

möglich, das Stabilitätskriterium statt auf die magnetische

Achse auf die geometrische Achse (Seele) zu beziehen, deren

Gestalt leichter beschreibbar und von außen vorgebbar ist.

Unter diesen Umständen hat das Mercierkriterium gemäß /3/ auf
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der Torusseele und für kreisförmigen Plasmaquerschnitt die

folgende Gestalt

"9-

ssit 7 b	 /4ds
2/-

	

,B2b) _254

	

b)

	

ew

- f?e [-BIN - j -24)] 27s) a's

	

o
( 4 . -1)

Alle Größen beziehen sich auf die Seele r -e 0 . Insbesondere

spielt der Faktor

0

	

a(je ff
(2 .4)-P

	

'0z/V 0

	

d/'*a

	

A- 0

dieselbe Rolle wie in (2 .1) oder (2 .2), wir setzen ihn wieder

als negativ voraus, so daß auch die geschweifte Kammer in (2 .3)

negativ sein muß . j

	

j so (s) ist die Stromdichte auf der Seele,

B

	

B so (s) das toroidale Hauptfeld, während der Quotient -tL-
nicht von der Bogenlänge s abhängt . Weiter ist

e) 367

	

(2 .)

%.r+Z4

	

j g/&„/4‘,
i41,ep)du e7‘1 (2 .6)

und K(s) ist im torsionsfreien Fall sogar eine Konstante,

nämlich

-

	

ws

	

--4-B _Je,s

	

.r

	

(2 .7)

	

0

	

.22r'

Auffällig ist der Resonanznenner in (2 .6) . Er führt zu einer

Singularität für eo	n, also für eine ganzzahlige Rotations-

transformation auf der Achse . Das Auftreten dieser Singularität

hängt mit einer geometrischen Resonanz zusammen, bei der die n-te

Harmonische der periodischen Krümmung immer in Phase mit der

nach Maßgabe von t rotierenden Feldlinie ist . Bei Annäherung

von 'to an ein ganzzahliges n bleibt die Verschiebung (s) der

magnetischen Achse gegenüber der Seele nicht mehr von der Ord-

nung

	

klein, sondern wird immer größer und nimmt die Gestalt

einer fielix mit der Periodenlänge

	

an . Für t, die zu nahe
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bei n liegen, ist der Durchmesser der Schraube so groß, daß

sie nicht mehr in die Plasmasäule hineinpaßt, d .h . es ist

kein Gleichgewicht mehr möglich, jedenfalls keines mit einer

einzigen magnetischen Achse, welche die innerste von lauter

ineinandergeschachtelten toroidalen magnetischen Flächen dar-

stellt . Die ganze Gleichgewichts- und Stabilitätstheorie, die

auf einer Entwicklung der MHD-Gleichungen in der Nachbarschaft

der magnetischen Achse beruht, ist daher an den Resonanzstellen

nicht mehr gültig . Die Singularitäten von (s) führen aber zu

einem Vorzeichenwechsel im Stabilitätskriterium (2 .3), d .h . es

muß jeweils auf einer Seite der Resonanzstelle einen Stabili-

tätsbereich geben, wobei jedoch die Stabilitätsgrenze +0

	

n

einem Ungleichgewicht entspricht und daher nicht erreicht wer-

den kann . Das schränkt die Stabilitätsbereiche etwas ein, und

wenn sie zu schmal sind, können sie durch den dort fehlenden

Plasmaeinschluß sogar völlig unterdrückt werden . Die Gleichge-

wichts- und Stabilitätseigenschaften sind also untrennbar mit-

einander verknüpft.

Wir betrachten jetzt zunächst den Spezialfall, daß das Magnet-

feld von der Bogenlänge unabhängig ist, also B(s) = korst.

Dann ist auch der Durchmesser der magnetischen Flächen in der

Nachbarschaft der magnetischen Achse konstant, und (2,3) redu-

ziert sich auf ,t
=1-4, (	 .)f- 1? 4) °A) ,ds <'" 0
422

	

,e2A) ..)e„

	

i?(5) (2 .8)

mit

	

-s22red-'''

.s'#L
(2 .9)

e

	

W/P e

In der Fourierentwicklung

-eoo

	

,eeo
a e

	

jr

	

* -,.,iee‘‚ee
e

	

(2 .10)
e::.)

	

h
»g -oo

	

n,-ote

setzen wir von vornherein woraus, daß nur Fourierkoeffizienten

an mit geradzahligem n - 2m auftreten . Das gewährleistet auto-

matisch, daß die Kurve, welche die Torusseele darstellt, auch

wirklich geschlossen ist /9/ . Das Verschwinden der Fourier-

koeffizienten a2.m.el bedeutet natürlich, daß die ungeraden

Harmonischen ausfallen und damit auch die zu den entsprechen-

den Resonanzstellen gehörigen Ungleichgewichte und Stabilitätse
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Bereiche . Weiter ist die mittlere Krümmung

<e'AJ

	

ezt,

und das mittlere Krümmungsquadrat

n,-eo

	

n,_ee

*
an

e -tYri-e-
2iem'-

	

#»)

,2 27‘- 4-4-.e/

	

-272r'.g A.

(2 .13)- oo

6

	

4.00 «
e

	

»2:- <SC
.2e-Ze .,99)

	

(2 .14)

Damit schreibt sich das Stabilitätskriterium (2 .8) in der Form

,zL .Z

	

..‚f ./‘

	

,./
.z

	

fa" f2.

z z

	

\e'

	

J,2 -37y-Z-ten')

	

0

	

(2 .1S)

oder mit Hilfe von (2 .7)
2

	 2

	

.iLoo

	

/an, /

	

-2% 2

	

4'4 i7-r-

	

,A9 .A- .eer'

	

(2 .16)

Die Theorie von Schafranov /6/ setzt von vornherein kreisförmi-

gen und konstanten Plasmaquerschnitt voraus und kann daher das

Mercierkriterium nicht nur auf der Achse selbst, sondern auch

in ihrer Nachbarschaft auswerten . Eine beliebige Stromdichte-

und Druckverteilung über den Querschnitt der Plasmasäule ist

(2 .11)

(2 .12)

Einsetzen von (2 .10) in (2 .9) ergibt
J-AL

	

tr.j..

-„,27?-i-er

	

ej‘,# L

	

e

	

3-2
Vi(s) = 4-e eire- .00

h

L

	

Lah e
h,-o

,
e

(2 .17)



2

zugelassen . Der Plasmaradius muß wieder klein gegen den Krüm-

mungsradius sein . Das Schafranov'sche Stabilitätskriterium

verallgemeinert das Kriterium (2 .2) und lautet

re
2-'	 it

	

(4-,c» 0
4

	

ert

	

,e s

	

(2 .18)

mit

	

2'. /„,r

	

(2 .19)4Aß,

	

,

	

. 7A .-ce

Addiert und subtrahiert man hinter dem Summenzeichen Gso

kann man (2 .12) benutzen und (2 .19) in (2 .17) überführen . Die

lokalen Kriterien von Mercier und Schafranov sind daher in dem

gemeinsamen Spezialfall, daß ein Plasma mit kreisförmigem und

konstantem Querschnitt auf der Achse betrachtet wird, identisch.

F› 1 ist jetzt die Bedingung für Stabilisierung durch den Ein-

fluß des magnetischen Topfes . Diese Bedingung ist hinreichend

für Stabilität der Plasmasäule gegen lokale Vertauschungsinsta-

bilitäten . Zwar kann auch die Verscherung mit zur Stabilisie-

rung beitragen, aber nicht auf der Achse selbst.

2 . 3 Einschränkung des Tokamakstabilitätsbereiches durch die R nnbah
__nmngeraden

eine

Im einfachsten Fall enthält die Krümmung neben dem konstan-

ten Glied nur eine höhere Harmonische mit a

	

a *-n

	

e na d .h.

es gibt eine harmonische Modulation der Krümmung gemäß

.sl
4) ez'ü 9, .2a ‘.es :,.22r°nef

(2 .20)
L

Eine toroidale Maschine mit einem solcherart gekrümmten Plasma

nennt man "Harmonika n" . Die Funktion F in (2 .17) hat in diesem

Fall die Gestalt

,ef-e,#y 4-917 JU
..e

	

de22

7 ( a.e l' -inne 9,2
ae,

oder

	

< 2.«4,

Für ah = 0 haben wir wieder einen gewöhnlichen axialsymmetrie

(2 .21)
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schen Tokamak mit der Kruskal-Sehafranov-Bedingung q 2	1 oder

4'2 < 1 . Dabei scheidet jedoch die unmittelbare Umgebung von

-t2 = 0 aus, denn ohne Plasmastrom ist bekanntlich in Axial-

symmetrie kein Gleichgewicht und kein Einschluß möglich . Der

bekannte Tokamakstabilitätsbereich liegt also ebenfalls in der

Nachbarschaft eines Ungleichgewichts . Für n
2« > 0 lassen die Ab-

weichungen von der Axialsymmetrie einen neuen Stabilitätsbereich

oberhalb der geometrischen Resonanz -t2 e n 2 entstehen, sagen wir

n 2 < ' <

	

21, 2 , dessen BreiteAn 2 mit dem Quadrat der Modula--

tionsamplitude 2 zunimmt . Andererseits wird der Tokamakstabi-

litätsbereich verkleinert, man schreibt q 2 > qT2 > 1 . Die untere

Schranke q1 für den Sicherheitsfaktor q wird mit
2
immer größer.

2

	

1
Für n

	

"2'a0

	

ist sie unendlich groß und der Tokamakstabili--'°
tätsbereich somit ganz verschwunden . Es bleibt dann nur noch der

zweite Stabilitätsbereich übrig, der an das Ungleichgewicht bei

der höheren Harmonischen anschließt . Variable Krümmung kann also

nach Überschreiten eines bestimmten Grenzwertes dazu führen, daß

selbst für beliebig große q oder kleine

	

der Einfluß des magne-

tischen Topfes für die Stabilisierung nicht g ehr ausreicht.

Betrachten wir nunmehr eine Rennbahn mit der Gesamtlänge

L L
o

	

29rRo+ 'L dann sind die Fourierkoeffizienten

, me'-4
(2 .22)

h-phe

Eine Rennbahn ist also nichts weiter als eine spezielle Ober-

lagerung von lauter verschiedenen Harmonikas, wobei zu jedem

der unendlich vielen
n

2
a ein entsprechender schmaler Stabili-

tätsbereich gehört . Das mittlere Krümmungsquadrat ist für

eine Rennbahn einfach

und die Funktion F wird

2,

	

4e2

	

4

2	 2'	 (
LZ,„. '

	

,2

	

a2.A«.

	

)

2	 ''gI -Ir°Lo

(223)
JF-

	

‘-"' .def g e‚-'f- 4,=e, 7mz-.-l

Führen wir noch das Längenverhältnis
s

	

x ein, dann ist
Lo
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--x, und F schreibt sich in der Form

-~ (2 .24)

Die untere Grenze q r des Sicherheitsfaktors im Tekamakstabili-

tätsbereich ist jetzt eine Funktion von x und läßt sich nume-
risch aus der Gleichu

(2 .2S)

berechnen . Bis auf einen Fehler von höchstens 1% wird
die folgende Näherungsformel beschrieben:

x

( ) durch

(2 .26)

Eine graphische Darstellung zeigt die untere Kurve von Fig . 4.
Bei Schafranov /6/ fehlt in der Formel (2 .23) der Faktor	 1

2vor dem Summenzeichen . Dadurch wird auch die (2 .26) entsprechen-
de Näherungsformel falsch (1 . 3x statt 0 .185x) . Außerdem liegen
die höheren Stabilitätsbereiche nicht wie

ben bei. q2 =

	

~, ~, . .e sondern bei q
2
von Schafranov angege-

1

	

1

	

1

	

1

	

4m2 =

	

36' 36, . ..

jj

	

E

	

5

	

1

	

p3

Fig .
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Das ändert jedoch nichts an der Aussage, daß der Tokamakinsta-

bilitätsbereich mit wachsendem x zugunsten der höheren Stabili-

tätsbereiche zusammenschrumpft, q 	 fe›cox

	

. Der Tokamakinsta---e
bilitätsbereich verschwindet also vollkommen, wenn die geraden

Abschnitte ebenso lang sind wie die gekrümmten . Eine Rennbahn

kann nur dann im Tokamakbetrieb arbeiten, wenn die geraden

Zwischenstücke beschränkt bleiben, sonst wird der Stabilitäts-

bereich auf die höheren Harmonischen verstreut . In diesem Zu-

sammenhang ist es vielleicht interessant, darauf hinzuweisen,

daß der einzige bisher gebaute Rennbahntokamak, das russische

Experiment TUMAN /10/, bezüglich der Stabilität besonders un-

günstig dimensioniert war, und zwar mit einem Längenverhältnis

x

	

1, Das erklärt möglicherweise einige der Schwierigkeiten,

mit diesem Experiment einen stabilen Einschluß zu erreichen,

wie insbesondere die gemessene Bohmdiffusion . Inwieweit die

höheren Stabilitätsbereiche einer Rennbahn von praktischer Be-

deutung sein könnten, wird in Anhang B untersucht.

Zu bemerken ist noch, daß die Herleitung des Stabilitätskrite-

riums eigentlich eine stetig veränderliche Krümmung voraussetzt.

Die magnetische Achse müßte sonst an den Unstetigkeitsstellen

einen Sprung machen, d .h . solche Gleichgewichte können streng-

genommen gar nicht existieren . Trotzdem darf man auch die un-

stetige Rennbahnkrümmung in das Stabilitätskriterium einsetzen

und erhält vernünftige Aussagen . Man kann nämlich eine Folge

von Gleichgewichten mit stetig veränderlicher Krümmung konstru-

ieren, welche sich der Rennbahnform immer mehr annähern . Dann

konvergieren die zu dieser Folge gehörigen Stabilitätsbereiche

sehr rasch gegen die aus dem Rennbahnkriterium errechneten

Stabilitätsbereiche . Dies wird von Tasso und Mercier /9/ im

einzelnen gezeigt und rechtfertigt die Vorgehensweise.

2 .4 Berücksichtigung eines Toroidalfelddivertors

Wir betrachten nunmehr den Fall, daß das Magnetfeld auf

eine ganz spezielle Weise von der Bogenlänge s abhängt . Auf

einer der beiden geraden Strecken der Rennbahn sei genau in

der Mitte (s = 0) ein zylindersymmetrischer Toroidalfelddiver-

tor angebracht, der zu einer Schwächung des Magnetfeldes c*'(s)
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auf der Achse führt und damit wegen der Flußkonstanz zu einer
entsprechenden Vergrößerung des Querschnittes der magnetischen
Flächen . Wir denken uns die Wirkung dieses Divertors auf den
Feldverlauf durch ein Modellfeld dargestellt, das von einer
einwindigen Spule mit dem Radius Rd erzeugt wird, deren (kleines)
Feld dem Hauptfeld entgegengerichtet ist . Ein schematisches per-
gektivisches Bild der Konfiguration zeigt Fig . 5a . Die Plasma-
säule muß man sich noch zu einem Torus ergänzt denken . Für das
Feld eines Kreisstroms id mit dem Radius R d gilt auf der Achse

Jd-
.2ed 4'4

Fig . 5

'r4

Fig .	
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Das Divertorfeld B d nimmt also mit wachsendem Abstand /s/ von

der Divertorebene rasch ab und wird schließlich gegenüber dem

Hauptfeld B 0 vernachlässigbar klein . Wir können die Ausdehnung

der durch den Divertor auf dem Geradenstück der Rennbahnseele

gestörten Zone durch eine willkürlich festgesetzte "Divertor-

länge"R d kennzeichnen . Das Feld an den Enden des Divertors

ist dann

frfa‘)

	

_t

	

‚-ei)	 	 4.5. .E Z (2 .28 )ä
(-f#

Selbstverständlich muß der Divertor auf seinem Geradenstück

Platz haben, d .h . die Divertorlänge muß in die Geradenlänge

hineinpasse . Definieren wir einen dimensionslosen Parameter

durch 5 = d

	

so ist zu fordernRo '

J2'-deo

	

'rede Z' LJ

	

X
' .,.Z

	

(2 .29)

oder kurz

Ein weiterer dimensionsloser Parameter wird zur Beschreibung

der Divertorstärke benötigt . Das Gesamtfeld ist

--2; - ,Bd4)

	

--2,efo)#) =

	

(2 .30)

mit

er kennzeichnet die durch den Divertor auf der Rennbahnseele

verursachte Welligkeit im Magnetfeld oder kurz den "Divertor-

rippel'' . Nun gewährleisten zwar (2 .28) bis (2 .30), daß die

Feldstörung an den Enden s

	

-e. der vom Divertor beeinfluß-

ten geraden Strecke sehr klein ist, wünschenswert wäre aber ein

Modellfeld, welches das Magnetfeld B(s) e B 0 auf den gekrümmten

Abschnitten der Rennbahn überhaupt nicht stört und sich trotz-

dem überall physikalisch vernünftig verhält, also stetig und

stetig differenzierbar ist . Da sowohl das Divertorfeld B d (s)
1

	

Ls
als auch dessen Ableitung B(s) für s =

	

von null verschie-

den sind, addieren wir zu f(s) einen kleinen Korrekturterm

g(s), der gerade in s ist und zwei freie Parameter enthält.

Am einfachsten ist ein biquadratischer Ausdruck :
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'Alts)` fAJ (2,

	

,s 9-

	

(2 .31)

so daß

17i

	

4

	

0

Nach Bestimmung der Koeffizienten a und b der Biparabel erweist

es sich als zweckmäßig, die Rennbahngeradenlänge auf 2 zu nor-

mieren (Fig. 5b), d .h . wir schreiben das endgültige Divertor-
modellfeld als Funtion der dimensionslosen Variablen y

	

s
L

und verwenden statt hNeine neue Funktion h(y) . Damit wirä

das Gesamtfeld für /y/

	

1:

.54)

	

[4- -rh&]]

	

(2 .32)

m it

	

y»

	

-# -

	

„e - #

	

z)y
(„feky) t (4#Ä )

und "421 j i/

	

-je	 	 f # ,4 7 # (4 ,g la497
4g

	

J‚£J-"9'/ (tez

	

tf‚/#4t1

wo

	

‚s'	 )e

	

17''

Das Gesamtfeld für /y/

	

1 oder /s/ .,

	

ist wie bisher konstant

gleich B o . Wir können nunmehr das Mercierkriterium (2 .3) auf

unser Divertormodellfeld anwenden . Eine wesentliche Vereinfa-

chung ergibt sich dadurch, daß alle Integrale, die 1 / (s) ent-

halten, von der Anwesenheit des Divertors unbeeinflußt bleiben.

Denn entweder liegt s in einem der 1J-Bögen, dann ist zwar R(s)

endlich, aber B(s) konstant wie im Fall ohne Divertor, oder s

liegt in einem Geradenstück, dann kann sich zwar B(s) ändern,

aber 1 /R(s) verschwindet und macht das Integral sowieso zu null.
Nur das erste Integral in (2 .3) liefert einen geänderten Beitrag.

Wir benutzen wieder (2 .7) und erhalten:

4 A	 ds

	

.,3,812/4 7
lt'.

	

-z ) L,2-z

4,1,z, e r L

	

,.e

	

3 L

.tz,2/ „IL

	

,i2AA' 4AL,«e-2

	

2%J/s.'
9'

	

-,/e4g

	

,dj9.

„e-4.V .1

	

L zs #«44ci,/z,	 z

,T 'zz.2, 1

	

-2ze'.r)de2

	

-hjj#

	

s
(2 .33)
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Gehen wir jetzt entsprechend wie bei der Herleitung des Krite-

riums (2 .17) vor, so stellen wir fest, daß die Eins in F

	

1

durch die geschweifte Klammtr von (2 .33) zu ersetz

	

ist . Mit

h(y),

	

(y) aus (2 .32) und

	

=

	

= -c--- sowie

	

2

	

er-
I+x

gibt sich für das neue Kriterium : -

f r-
;e'

	

„,,9

	

(	 ,(y)	
F > 4 -.g

	

7--4#

	

e-h/,„q,

	

r.,f-v.hly2 44 (2 .34)
Iren (

	

.. a

Für F ist dabei der Ausdruck in (2 .24) zu verwenden . Da die

rechte Seite von (2 .34) immer größer als eins ist, wird das

Stabilitätskriterium durch den Einfluß des Divertorrippels

verschärft, und wir haben q T(x, » o)>qr(x, t - = 0) . Die Ta-

belle auf Seite 29 zeigt für verschiedene Werte der Divertor-

länge ArR o und des Divertorrippels VB ° in Abhängigkeit von

der Geradenlänge xi7R 0 die untere Grenze des Sicherheitsfaktors

q T im Tokamakstabilitätsbereich . Diejenigen Felder in der

Tabelle, welche die Bedingung 4x verletzen würden, sind leer,

ebenso die Felder, für welche q t unendlich groß wird und damit

nicht mehr existiert . Offenbar wächst (1 7. für konstantes x umso-

mehr, je größer e-' und je kleiner S ist . Ein tiefer Rippel ist

also am gefährlichsten, wenn er auch noch kurz ist . Das hängt

mit dem Vorkommen eines Integrals über B 2 (s) in (2 .3) zusammen,

welches der Divertorlänge umgekehrt proportional ist, was zu dem
1Faktor x- vor dem letzten Integral von (2 .34) führt . Der ungün-

stigste gerechnete Fall, c5 e 0 .1 und t'= 0 .25, ist in der oberen

Kurve von Fig . 4 graphisch dargestellt . Alle anderen gerechneten

Parameterwerte liegen in dem Bereich zwischen den beiden darge-

stellten Kurven . Die Ergebnisse sind in zweifacher Hinsicht re-

lativ erfreulich . Erstens wächst

	

wesentlich langsamer mit x

als von Schafranov ursprünglich ausgerechnet, und zweitens ist

der zusätzliche ungünstige Einfluß eines Divertors fast zu ver-

nachlässigen, sofern nur der Rippel in vernünftigen Grenzen

bleibt . Für realistische Parameter wie etwa x = 0 .3 und e'= 10%

wächst qr höchstens von 1 auf 1 .28 . Das wirkliche Divertorfeld

wird natürlich nicht genau die angenommene Form des Modellfeldes

haben . Das beeinträchtigt aber die Brauchbarkeit der Ergebnisse

nicht, denn da im Stabilitätskriterium nur über den Feldverlauf

integriert wird, kommt es auf die lokale Feldverteilung im ein-

zelnen gar nicht an, sondern nur auf globale Parameter wie g und D .
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2 .5 Abschätzung für das kritische

Zum Abschluß wollen wir noch eine grobe Abschätzung für das

mit einer Rennbahnkonfiguration maximal erreichbare Plasma-ß

angeben im Vergleich zu einem axialsymmetrischen Tokamak . Wir

gehen hierzu nach einem Vorschlag von Nührenberg ganz ähnlich

vor wie in einer Arbeit von Lortz und Nührenberg /11/, die den

Einfluß einer elliptischen oder dreieckigen Querschnittsform

auf das kritische q und das kritische ß in axialer Symmetrie

untersucht, und zwar ebenfalls mit Hilfe einer Entwicklung in

der Nachbarschaft der magnetischen Achse . Wir haben statt dessen

Rennbahngeometrie, andererseits aber die Vereinfachung eines

kreisförmigen Plasmaquerschnitts, und wir können die Rechnung

für das kritische ß ohne Schwierigkeiten auf unseren Fall über-

tragen . Wie schon von Lortz und Nührenberg hervorgehoben wurde,

gestattet es die Beschränkung der Rechnung auf eine Umgebung der

magnetischen Achse nur, einen rohen Schätzwert für ß zu ermit-

teln . Das wahre kritische ß für Gleichgewicht wird erreicht, so-

bald eine Separatrix die Plasmaoberfläche mit Radius r

	

a berührt,

und das wahre kritische ß für Stabilität wird spätestens dann

erreicht, sobald für irgendein r

	

a das Mereierkriterium ver-

letzt wird . Zur Bestimmung dieser ß-Werte müßte man jedoch den

Gleichgewichtszustand des Plasmas über den gesamten Querschnitt

im einzelnen beschreiben und die radialen Profile von Druck und

Magnetfeld angeben . Wir begnügen uns daher mit der groben Abschät-

zung und können aus diesem Grunde auch von den Modifikationen

durch einen Divertor absehen, da dieser ja, wie oben gezeigt, im

allgemeinen nur zu kleinen Korrekturen führt . Die von Lortz und

Nührenberg zur Darstellung physikalischer Größen benutzten Hama-

dakoordinaten (V, 9,) lassen sich im Falle einer Rennbahn mit

Umfang L ausdrücken durch (V

	

Lr 2 ,

	

und wir können

das kritische ß wie folgt abschätzen:

,»

	

,‘e;70J

	

v - 1/:'.,«, )

	

,Zlret
PeeaJe

V.«d

S

	

v
o
	 4e3a 	

A 2 9 gt/„fe,.t/

	

(2 .36)7 2 4 .e„z 2e,,i,,„r

(2 .35)

/03 -

	

,ev

-
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Hierbei ist

7,0ne Z)

	

(2 .37)
'eß

	

9i

	

6'J;

das Verhältnis des gewöhnlichen mit der magnetischen Feldstärke

(Flußdichte)Jegebildeten (1-Werts zu dem entsprechenden mit der

elektrischen Stromdichte

	

gebildeten et-Wert . Für abnehmendes

Druckprofil muß Q

	

1 sein, und es beschreibt Q> 0 einen para-

magnetischen, Q 0 einen diamagnetischen poloidalen Strom . Das

größtmögliche ß in (2 .36) wird für das kleinstmögliche erlaubte

q erreicht, also für q T (x) gemäß (2 .26) . Damit haben wir

- Je

(,f-,gx (,g a 185,E# A e2A x

	

(2 .38)

mit

R 0
Bei festgehaltenem et-Verhältnis Q und Aspektverhältnis A = -

4x
sollte das Verhalten von ß(x) eine gute Vorstellung von dem

Einfluß der eingeschobenen Geradenstücke auf das maximal erreich-

bare	 	 (x)

	

1
bare ß vermitteln Speziell für x

	

i st auch ß	 Wachsen-

des L und q können also ß drastisch herabsetzen .



3 2

A N H A N G

A Herleitung des Transversalfeldes erster Ordnung mit Biot-Savart

Während die Felder nullter Ordnung durch (1 .4) gegeben sind,

gilt nach Schafranov /2/ für die Felder erster Ordnung:

',..i9 4

	

-37 h..f COS W (A .l)

Die Fourierreihen für das Potential erster Ordnung sind außen

und innen verschieden :

7w-

	

#,2 ,9e

	

-w

	

g

	

=,fe '4°

	

,7e,„

	

'

.„.e:‘

	

2 6d Z

5P‚e e

rrrr

(A .2)

Die Konstanten An ,

	

Cn stehen dabei für folgende Ausdrücke:

#2 Jre

e2A

= b	
J

4-2t

w-Z
im) n

gz

-ese

(A .3)

Hierin sind alle modifizierten Besselfunktionen an der Stelle

n zu nehmen . Besondere Formeln muß man für n ---,. 0 herleiten.

Es ergibt sich :
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„..le:ze:teel

und

	

(A .4)

Zur Berechnung der Stromdichte

	

an der Plasmaoberfläche benö
1tigen wir nur B ,go

	

, - 1 (a) und damit
n

(a) . Durch Einsetzen von (A .3)

in (A .2) folgt :

0 Z .„re
2

	

-
4

	

.

'Po°, e

	

e- 4n «

	

,sat

	

aLtf'

fh‘'	 	 -s:

	

.„

-e d5--T---rZ'
-:L#--it--

	

(A .5)

4'.

Diese Ausdrücke haben auch für n 0 einen Sinn, wenn man sie

durch den formalen Grenzübergang A'na-+O definiert . Dann wird

ze 4 k oe (4a"e

nämlich o-Z

	

eA2.
Jd	 ,fo

(A .6)
und

reg.: 74

Dieselben Ausdrücke folgen aber auch aus (A .4), wenn man dort

= a setzt . Wir brauchen daher im folgenden den Fall n = 0

nicht mehr gesondert zu behandeln, der Term für n

	

0 folgt aus

den Termen für n 9( 0 einfach durch nm

	

oder Iim

	

. Für

die Felder an der Plasmaoberfläche a --›o

	

ne O

ergibt sich, wenn man cos £,0 durch Re e iw ersetzt und für k(s)

die Fourierreihe (1 .6) einsetzt, die Darstellung

/fej ee z -s

4v-lee,,s:)474)

/Re z

-i:e„„' ,„t«,Ij i
t1/

Hieraus berechnet sich der Feldstärkensprung an der Grenzfläche

(A .7)

zu
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-et y- A 2''

.4-oo

fe 1' 71- n /- e,i (alle
634 !v. «

	

g' - 00

	

f

	

/s _ 2 4)A 29' 1

	

re g

	

,,®`66

und durch Einsetzen von (A .5) folgt

mit AS -'f i',.ewe

.w-

i-x;,,,,s)

mit

/9p-e CoJ

	

®Si

	

4
,.ew«m) a4e

(A .9)

Diese Formeln sind für die Oberflächenstromdichte zu verwenden:

. ..g

	

,

	

am i, ,g4h [2 0 -2 o „es 7,7 -etw,
'#i

	

w

	

_re -ts

Es empfiehlt sich, alle Vektoren auf das feste Dreibein

(A10)

1

	

2'

	

) zu beziehen (Fig . 2) . Offenbar ist

ces

	

Ixe --‘,, ‚a.r
1 -0/ez Ca',tr

-*%- -f/'oe «‚

	

CDJ
,,siN 5 .ö»

	

-

	

et'" 4;;0,

	

1

	

Cos

41.- c W 1 -.i.",s;J»,

3' - 1'4 .S';PY

	

r e0,51.fre' °#' IX:3 ,Sz:de
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Damit schreibt sich

	

in der Form

. it
#

	

4°43

-S--r ( 4

	

CO-r

	

- 41 .e:s

	

,Si'»

4192,

	

-si'»

	

cousr -<; w)

js

	

ui)

	

(A .12)

Für

	

()) ist

	

und ABs ,w i

	

,AB s w(s i ) einzu-
setzen . Wir kommen nunmehr zur Darstellung des Differenzvektors

4r'-tn- ' zwischen Aufpunkt (Torusseele) und Integrationspunkt

(Plasmaoberfläche) und schreiben:

Mit

	

(1) aus (A .II) folgt also

,v--,e..f

	

(

	

-re.'‚ a ,$;P7 / ces oft")

-et. 4127 )i,	- a Ces r/ coss

-et -ej 7- a ,.r;#.s ad)

und

	

(4-r.,

	

(ei. -‚:.» '+
Z

2 CY Co,s

	

(°mi r) .~; i - r

Zur Berechnung von

	

2 gehen wir aus von

ois

	

#j

	

)

	

a's .s.;0.7rA) eb)

e,/,e)

	

cf

	

ei /"fj

	

fei )

	

s) .f‘r'j (A . 16)

Bei der Integration erweist sich die in Fig . 2 definierte Hilfs-

funktion T(s) als nützlich . Sie ist stetig, auf den gekrümmten

Abschnitten konstant und auf den geraden Abschnitten linear mit

dem Anstieg

(A .13)

(A .I4)

c°es (A .15)

,	 .,

	

74/ -2)

	

', (4 )

	

(A .17 )-eo
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Eine allgemeingültige geschlossene Darstellung ist daher

, et/T- ,sin y4J (A- 4,/ (A . 18)

Damit wird

oes
e-eJ509b')Wsi ' 15.4-)

s

077 /coJy)# 74)j7

,.s›m rb)	 is) 1:0 _„,i)

	

2.rze r(.'.f'')

	

(A .I9).- -	 -e
1?4)

	

ge,, (es)

	

0

und die gesuchten Stammfunktionen sind

''f,o

	

5.0/fj

7s) dt.

	

- a ices K,fj T7..r)j

	

(A .20)
/

	

et,

	

9n .S;gl ?)

9 cci

also

T- (A .21)

Für den Abstandsvektor

	

r ergibt dies die endgültige Form

e. 4

	

# -ly-,3 61/3

)T /-
ca-r r/ces eei'

lxs

	

a

	

(Aa 22)

.cis
und

	

,1/-' 1 1 = ,R	 	 22 ) "0,, a

mit

	

co.s(9)-9s:j 7eer.

	

ea,sT9(T-7-

	

eos 7-r)

	

7'

	

(A .23)

In einem Kreisbahntokamak ist speziell T ...-e. 0, und es kann ohne
	Beschränkung der Allgemeinheit

	

0 angenommen werden . Daraus
folgt

,‚lr'--tri

	

(4- (au r9(4- 4)-0 CosW) CK,

eo rin ' ,S/'n G~ /y°

	

eia

	

/ee7,-‘ «d(

	

')‘t

(7T

(A .24)
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Für kleine

	

ist der dominante Term der Reihenentwicklung

/1

	

/ (4

	

c‘u'
2 (A .25)

Ähnlich können wir auch im Falle der Rennbahn verfahren . Falls

s und s' auf demselben gekrümmten Abschnitt der Rennbahn liegen,

verschwindet die Differenz T-T', und für kleine ses'l folgt

(A .26)

Falb jedoch s und

	

auf demselben geraden Abschnitt der Renn-

bahn liegen, verschwinden cos 9e und cos i , während

ist, und für kleine Ises

	

folgt

1,,.xe-- .te-
(A .27)

Daher gilt allgemein außer an den Unstetigkeitsstellen der

Krümmung für kleine ses' die Schreibweise

e.ri
toJer.4,) (A .28)

Wir können jetzt die einzelnen Faktoren im Integranden des

Biot-Savart'schen Gesetzes angeben und nach Potenzen von

entwickeln . Für das Vektorprodukt folgt aus (A .I2), (A .21) 0

und (A .22)

'x

	

l 3
/

	

#i
j-f

4 z [-

	

'

	

°(i,1 -)-T 1 ces - 4/ex

	

r A ' a rco Lia aj

„.Z22 s,l

	

-

	

-

	

ce.s
res

	

-t

Hierbei ist D1 durch (A .23) erklärt und D 2 durch

.s,»79fe-r)+

	

(A .30)

Die Terme

	

s

	

,eß ;

	

schreibt man, ausgehend von (A. .9), am zweck-
,

mäßigsten in der Form

d..Z

.e».,, [A

	

-

	

ce,s 5p' A/*

	

,4,, ,r/.ey ',.,§eee ev.]

(A .29)
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#

	

1
3

	

=

	

ca.". ,g,o
06 C

Mit

	

+me

$

	

X

	

fCOJ/ -t';. '
te*-«de

. (1

	

-)(
0

‚

	

4.00

	

(A .31)

,e/Ic/s

	

X
0,0.0

k» eg A» f ,.r;n(.,E

Im Nenner loe-eg 13 folgt aus (A.23) und (A .28), daß der Term mit

cos tat sowohl für

	

Ro als auch für s-s'---, a jeweils um

eine Ordnung kleiner ist als die übrigen Terme . Daher gilt die

Entwicklung

7 e d
-e2eNte„$	,P .‚

17;2220 #a

	

)

„ee-4/- /1 3

	

(17 ;2) +a z).ez #e'2,P

	

f')

	

(A .32)
Ja	 Au°	

Für das Flächenelement schließlich folgt aus (1 .7)

/

	

a cal w )

(--

	

a/
w fr

	

d,s /	(A .33)

das heißt bis auf die "Ferme höherer Ordnung in

	

ist
o

®

	

cri iS /

4

	

-a cesa/ 3
‚eez?e	 #

(A .34)

	

14r-,40-/1 3 (,g,zA 93

	

,e.A4.aZ

Wir können jetzt das Integral

.
/.#e-

	

edel ex,

nach Einsetzen von (A .29) ausführen, wobei alle Integrale über

ungerade Potenzen voe sinal oder cos ev verschwinden, nehmen

höchstens Tenne

	

a-

	

also zweiter Ordnung mit und erhalten:
Ro

--›

	

/
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Hieraus folgt das gesuchte Eigenfeld durch Integration über s':
h,mL z.

	

s/

(A .37)

Wir nutzen jetzt die Tatsache aus, daß der Nenner des Integran-
den von (A .37) stark singulär ist . Der Hauptbeitrag zum Integral
stammt aus einer Umgebung des Aufpunktes s, für kleine j s '-si gilt
ja nach Vergleich von (A .23) mit (A .28)

--f

1.-

	

g

	

(A .38)
ag

Die Halbwertsbreite dieser Funktion ist etwa g- a, und für große
verhält sie sich wie	 1	 3 . Wir können daher im Zähler

des Integranden nach Potenze s vA) s t -s entwickeln und s'-sa
annehmen . Mit Hilfe von (A« 16) bis (A .19) sowie aus (A .21),
(A .23) und (A .30) ergibt sich für die Taylorreihen:
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Es genügt, in l2 Ausdrucke der Form ar(s'-s) Y mit

	

+y

	

2 zu

berücksichtigen . Dann bleibt folgendes übrig:
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Die durch (A .31) definierten Reihen ,ß c,s brauchen also nur/
noch an der Stelle s ausgewertet zu werden,

	

-e,E . Es fällt

auf, daß in n e, -ti-,3 im zweiten Term D 1 nicht entwickelt wurde.

Das hat folgenden Grund . Wir können asymptotisch für kleine
a die vorkommenden Integrale wie folgt vereinfachen:

	 do,
(.,fl,',r./2 4

Für 4 1-ez, v a ,2]3/.
0

doch nicht möglich, das vereinfachte integral würde gar nicht

konvergieren . Hier muß der korrekte Ausdruck zunächst vollstän-

dig stehen bleiben und die Asymptotik etwas sorgfältiger durch-

geführt werden, was im Anschluß an Gleichung (1 .10) bzw . (1 .18)

geschieht . Die Integration bezüglich s' ergibt also bis auf

Terme höherer Ordnung in
o

e.e:/J-r]

/2

	

c

.zed,

	 a2(
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a
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Und mit (A .II

	

(A .31) und

(A .40)
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(A .41)

ist eine solche Vereinfachung je-

A .42)

s..f

	

azete,s
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erhalten wir für das Eigenfeld den folgenden Ausdruck:

(--
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Offensichtlich ist

	

= 4(B
r,
- .-li - ) das in (1 .4) angegebenesi se 1e ig 0 . Die restlichen Terme stellen somit das gesuchte eig dar,

welches rein trarisversal ist .. Uns fehlt jetzt nur noch das im
Gleichgewicht auf der Seele des Plasmatorus tatsächlich vorhan-
dene Magnetfelde, und wir finden, ausgehend von (A .1) bis (A .3):
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Hieraus folgt für
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Einsetzen von Cn und Verwendung von (A .11) ergibt daher:

d5-:

-..41,.
/ .

	

(A . 47)

0. 1 ist also ebenfalls rein transversal . Durch formalen Grenz-'
übergang ela --eO folgt, daß das Reihenglied für n = 0 ver-

schwindet, in Übereinstimmung mit (A .4) . Das bedeutet, daß es

in einem Kreisbahntorus aufgrund der Symmetrie überhaupt kein
1

gibt . Durch Zusammenfassen von (A ..44) und (A .47) und Ein-1
setzen von o4, n aus (A .9) erhalten wir nunmehr das im Gleichge-

wicht benötigte äußere Transversalfeld :
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Dieser Ausdruck wird für Gleichung (1 .16) verwandt und im An-

schluß daran noch weiter umgeformt.

B . Verwendbarkeit der höheren Stabilitätsbereiche einer Renn-

bahn verglichen mit Harmonica II

B .1 Ergebnisse des Exeimentes e Harmonica e 11

Der erste der höheren Stabilitätsbereiche einer Rennbahn liegt

oberhalb von 1-ti 'e 2 . Es wäre ein Vorteil, wenn man dieses Sta-

bilitätsfenster ausnutzen könnte, denn ein größeres et' läßt

einen höheren Plasmastrom und damit auch eine bessere Ohm t sche

Heizung zu, zumal dann auch die Abschätzung (2 .36) für das

kritische ß wesentlich günstiger ausfällt . Tatsächlich gab es

schon einmal ein Experiment, das sozusagen eigens zur Untersu-

chung des Stabilitätsfensters bei der ersten höheren Harmoni-

schen gezüchtet war, nämlich das Experiment Harmonica II im

französischen Fontenayeaux-Roses /14-16/ . Es hatte eine geome-

trische Achse mit der charakteristischen Gleichung

i/elr°S,

	

(B .1)

a
Für diese spezielle Harmonika war also

	

1, d .h . es trat

überhaupt kein Tokamakstabilitätsbereich j auf, sondern einzig

und allein der Stabilitätsbereich bei 1-t'N12 . Durch die gewählte

Abhängigkeit der Krümmung von der Bogenlänge hatte die Plasma-

säule die Form einer Acht mit dicker Taille oder einer Gitarre

mg.

-lt / _ 437 1
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. Der Umfang war 270 cm, der Innendurchmesser des

Pyrexgefäßes 5,5 cm und der Durchmesser des Limiters 2 .8 cm, Das

Experiment war von März 1966 bis Februar 1971 in Betrieb und

wurde in dieser Zeit viermal umgebaut, d .h . es liefen insgesamt

5 verschiedene Versionen . Hauptzweck des Experimentes war es,

die MOB--Theorie von Mercier /3,8,12,13/ zu testen, der zufolge

bei °t= 2 kein Gleichgewicht bestehen kann und sich oberhalb

ein Stabilitätsbereich anschließt . Nach Mercier ist in der Nach-

barschaft von 1«t°i e 2 eine schraubenförmige Verschiebung der

Plasmasäule zu erwarten gemäß

	 eds r

	

mit

und

	

j

	

( B .2 )

Die Verschiebung an den Stellen stärkster Krümmung ist jeweils

vom Krümmungsmittelpunkt aus gesehen nach außen, d .h . vom Torus-

mittelpunkt aus gesehen ist die Verschiebung an den stark ge-

krümmten Enden nach außen, an der Taille nach innen . Daher war

ein Netz von helisch gewundenen Leiterpaaren zur Erzeugung eines

Transversalfeldes Bj --es siny vorgesehen, und zwar sogar mit

k = 0, 1- 2 und Go = 0,

5

Ein zweites ähnliches, aber unabhän-

giges Netz von verschraubten Leitern wurde als Flußmeßschleifen

zur harmonischen Analyse des transversalen Flusses eingesetzt,

der bei einer Verschiebung der Plasmasäule durch das Gefäß hin-

durchtreten muß . Hier wurden auch m = 2 und höhere k berücksich-

tigt.

In den ersten beiden Versionen der Maschine Harmonica 11 ergaben

sich makroskopische Verformungen der Plasmasäule nicht in der Nähe

von fti = 2, wo man sie theoretisch erwartet hätte, sondern in der

Nähe von

	

e 1 . Und zwar zeigten die Signale der Flußmeßschlei-

fen für Plasmaströme mit ft,A1 ein unregelmäßiges Zacken- und

Spitzenmuster im Oszillegramm . Möglicherweise war hier einfach

die Kruskal-Shafranov-Grenze beobachtet worden, aber über die

Stabilität von nichtaxialsymmetrischen Anordnungen gegen Kink-

moden ist theoretisch nichts bekannt . In den letzten beiden Ver-

sionen der Maschine wurden die experimentellen Randbedingungen

besser definiert durch Einbau einer stabilisierenden Kupferschale

sowie Vergoldung der Innenseite des Pyrexgefäßes . Jetzt traten

die singulären Flußschwankungen tatsächlich für
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ftg2 auf, und zwar je nach der Plasmastromrichtung (I s	0)

ganz überwiegend auf einer k = -2 oder k = +2 Schleife . Nicht

nur der Drehsinn der heinischen Plasmasäulenverschiebung folgte

der Rotationstransformation, auch die Phase stimmte mit der

theoretischen Erwartung überein . Außerdem hatten die aus mag-

netischen Sondenmessungen gewonnenen Verschiebungen der magne-

tischen Achse für 2 <

	

Z' 4 die theoretisch vorausgesagte,
Größenordnung von etwa 5 mm . Mit dieser Modenanalyse sind aber

die Erfolge des Experimentes bereits erschöpfend behandelt . Es

war unter den gegebenen experimentellen Bedingungen nicht mög-

lich, die Existenz des höheren Stabilitätsbereiches nachzuwei-

sen . Vielmehr beobachtete man eine starke Plasmawandwechsel-

wirkung, welche alle Erscheinungen überdeckte . Schmierbilder

zeigten ein von Anfang an über den ganzen Gefäßquerschnitt

leuchtendes Plasma . Die Strahlung rührte von Verunreinigungen

her, und das Plasma erreichte höchstens eine Elektronentempe-

ratur von 10 eV . Der Limiter spielte praktisch überhaupt keine

Rolle, und auch das Anlegen von Transversalfeldern hatte keiner-

lei Einfluß auf Gleichgewicht oder Stabilität des Plasmas . Die

Kupferschale trug hierzu ohnehin nur wenig bei, da die durch

k

	

2 Verschiebungen hervorgerufenen Spiegelströme zu stark ge-

dämpft werden . Offenbar war es nicht möglich, die äußeren

Transversalfelder so genau wie nötig einzustellen, um das

Gleichgewicht zu beherrschen . Die Plasmasäule hatte immer

Wandkontakt, und das Gleichgewicht kam überhaupt nur durch die

Wechselwirkung mit der Wand zustande . Solche Gleichgewichte sind

theoretisch schwer zu beschreiben und praktisch uninteressant.

Durch die Plasmawandwechselwirkung änderte sich im Laufe der

Entladungen auch die Oberflächenbeschaffenheit der inneren Gefäß-

wand, sie "alterte", und nach 3000 bis 5000 Schüssen konnte man

trotz Vergoldung überhaupt keine vernünftigen Messungen mehr

machen, die Flußsingularitäten für 1+1 ) 2 waren nicht mehr iden-

tifizierbar.

B .2 FogrIt212gen aus der_Theorie undder Methode d ehen

Bilder

In Harmonica 11 ist es nach B .1 zwar gelungen, das Ungleichge-

wicht bei r4

	

2 nachzuweisen, nicht aber das oberhalb daran
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anschließende Stabilitätsfenster, und daher konnte man dieses

auch nicht nutzbringend verwerten . Mit einer Rennbahn ginge das

noch schwieriger, wie ein zahlenmäßiger Vergleick der Breite der

Stabilitätsbereiche zeigt . Aus (2 .21) folgt für -n = -1

	

1:
4to

49'4 2-
-?

(B .3)
441

Der Rand des Stabilitätsbereiches ergibt sich also aus der

Gleichung

#

	

9'

4'

	

4

ef.28

(B .4)

Der für die Breite des bei + 2 liegenden Stabilitätsberei-

ches einer Rennbahn maßgebende Fourierkoeffizient a 2 ist gemäß

(2 .22) am größten für 1, = 2 L o oder x e 1, d .h . genau dann,

wenn der gewöhnliche Tokamakstabilitätsbereich gerade verschwun-

den ist . Für diesen Fall

f»29

olgt aus (2 .24)

2'e 2 46	 4

F - 9 _lr-z

	

7 _7/2 4_4.72 ›

	

(B .s)
»2 4(4-44 .z7 2

Für den Rand des Stabilitätsbereiches haben wir also jetzt die

Gleichung

2/ 46'„g 4) „f

e -2 .. 4(44	 .3 )

	

.237

	

(B .6)

Die Zahlenwerte (B .4) und. (B .6) für pel decken sich mit den An-

gaben von Tasse und Mercier /9/ . In einer Rennbahn ist also der

erste der höheren Stabilitätsbereiche höchstens halb so breit wie in

Harmonica 11, nämlich 0 .37 statt 0 .74.

In Wirklichkeit liegen die Verhältnisse noch ungünstiger, denn

in einer gewissen Nachbarschaft der Resonanz

	

= 2 ist ja

gar kein Gleichgewicht möglich . Eine Theorie von Mercier /12,13/
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gestattet es, mit Hilfe eines besonders angepaßten Modells,

quantitative Aussagen hierüber zu machen . nennt in der Nähe

einer ganzen Zahl k liegt und der zugehörige Fourierkoeffizient

ak	0 ist, dann kann man nach Mercier alle Reihenglieder mit

Ausnahme von ak außer Acht lassen und statt des wirklichen to-

roidalen Plasmas (als eben vorausgesetzt) ein Bildplasma be-

trachten, welches die Gestalt einer Helix mit der Krümmung

a k und der Torsien T
= 2k2r- hat . Mit Hilfe dieser Methode

der "helischen Bilder" (images h g licoidales) und durch Ausnut-

zung der helischen Symmetrie kann man spezielle diffuse Profile

zugrunde legen und analytisch durchrechnen . Auf diese Weise

gewinnt man eine vollständige Beschreibung des Gleichgewichts

in der Nähe der Singularitäten und im Anschluß daran auch eine

verbesserte Stabilitätsrechnung . Je nach der studierten Resonanz

hat man ein anderes hellsches Bild . Der Obergang vom wirklichen

toroidalen Plasma zum helischen Bildplasma ist insbesondere

gekennzeichnet durch

	 7 ,r

	

- h

0

	

..2kar.s,. (B .7)

*.g = 0 bezeichnet die der Helixachse zugewandten Innenseite der

helischen Plasmasäule,

	

= .' die Außenseite . Mit abnehmendem

verschiebt sich die magnetische Achse immer weiter nach außen

in Richtung eq = e', solange bis schließlich kein Gleichgewicht

mehr möglich ist . Die magnetische Achse beschreibt also eine

ebensolche Helix wie die geometrische Achse, nur mit größerem

Radius, so daß die magnetischen Flächen exzentrisch werden . Für

das eigentliche toroidale "Urbild"-Plasma bedeutet dies

Q -Yf e 2k's/L, d .h . die magnetische Achse dreht sich bei einem

Umlauf um den 'Perus k-mal um die geometrische Achse, und der

Schraubenradius nimmt mit Annäherung von -t an k zu.

Mercier untersuchte eine spezielle Klasse von Konfigurationen

mit parabolischem Druckprofil (linear in der Flußfunktion),

kreisförmigem Plasmaquerschnitt (Plasmaradius r = a) und großem

Aspektverhältnis . Angenommen wurde insbesondere

(B .8)
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Das Magnetfeld ist konstant bis auf C( 2 ), -t in (B .7) bezeichnet

die mittlere Rotationstransformation bis auf C(0„
2
), und als Rand-

bedingung muß die Flußfunktion auf der Plasmaoberfläche konstant

sein und der Druck dort verschwinden . Selbstverständlich muß

auch

	

1 sein, sonst hat es keinen Sinn, Krümmungseffekte in

nullter Ordnung über das helische Bild zu berücksichtigen . Die

nullte Ordnung ist außer in der Nachbarschaft der Singularitäten

einfach ein zylindrisches Plasma, etwa wie bei Shafranov /6/.

darf aber auch nicht zu klein werden, sonst ist kein Gleich-

gewicht mit nur einer magnetischen Achse mehr möglich . Die ana-

lytischen Ausdrücke vereinfachen sich beträchtlich, wenn man

eine Stromdichteverteilung betrachtet, die bis auf einen Term

cos Iwg konstant ist . Dann gilt nach Mercier

- (4- 2274- " eas (B .9)
,f 4 /L ) zf)y

	

.24 a

	

1'1-j ' 2-,77

	

e5',rcg

	

7

mit

(B . 10)

Offenbar muß 941 sein, der Plasmadruck kann ja niemals negativ

werden . P ist eine Art Plasmaverformungsparameter, denn für

.be)0 verschiebt sich das Maximum der Druckverteilung und damit

die magnetische Achse nach außen in Richtung ?,,9= .%tr. Ist die

Gleichgewichtsbedingung y

	

1 nicht erfüllt, dann wird die Topo-

logie der Konfiguration komplizierter, und es treten mehrere

magnetische Achsen auf . Die Berechnung der Nullstellen von
c?p,jf

	

ergibt für die Lage der magnetischen Achse
X

	

K.,ry
(B .11)

also .10

	

4/ edv-

	

«

und
kp,

	

-e

	

"/;;e-

	

t" f

Die maximale Verschiebung der magnetischen Achse gegenüber der

geometrischen Achse ist also 3 a . Wir wollen einmal für = 0

und k = 2 ausrechnen, wie klein ei= +e2 höchstens werden darf,

bevor y L 1 verletzt wird . Aus (B .1O) folgt

)‚ . a «72 4- .1) ,f4,t 7

(B .12)
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2
Für Harmonica II ist a

(B .I3)

	 eee	

e 270 cm, a e 2 .75 cm.

sin .eLo/	 	 1
am R o °Für eine Rennbahn mit L = 2 L

0
ist a 2

Das Aspektverhältnis sei A =

	

a
-2 = 3 .5.

,4 7 ae (B . 14)

Der tatsächlich verfügbare Stabilitätsbereich von Harmonica II

ist also gemäß (B .4) und (B .13) gleich 2,74

	

2,13 = 0,61, der

entsprechende Bereich der ins Auge gefaßten Rennbahn bei der er-

sten höheren Harmonischen dagegen ist gemäß (B .6) und (B .14)

gleich 2,37

	

2,19 = 0,18, d .h . gegenüber Harmonica II beträgt

die Breite des Stabilitätsfensters der Rennbahn etwa 30%.

Auch dieses Ergebnis dürfte noch zu optimistisch sein, wie eine

genaue numerische Auswertung des Mercierkriteriums auf achsen-

nahen magnetischen Flächen im Modell der helischen Bilder zeigt

/12,13/ . Für kleine . und kleine ß ist das Stabilitätskriterium

in der Nähe der k-ten Resonanz durch das dominante Reihenglied

von (2 .19) gegeben:

.0-

zr

ce
-t-e

	

Zieee "e-2
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-ten
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#

	

Loo

	 akt

	

42e-
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«4 #7)

Für Y 1 1 dagegen ist dieses Kriterium nicht mehr anwendbar . Die

Rotationstransformation ist dann nicht mehr nahezu konstant

über den Plasmaquerschnitt, sondern ist auf der magnetischen

Achse wesentlich größer als am Rande, wo

	

k geht und die

kritische Resonanz zuerst eintritt . Das bewirkt eine starke

Verscherung . Außerdem wird die mittlere magnetische Senke we-

sentlich vertieft . Die damit verbundenen stabilisierenden Effekte

nützen natürlich nach Überschreiten der Gleichgewichtsgrenze

1 nichts mehr . Auch für große ß gilt (B .15) nicht mehr.

(B .I5 )
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Die magnetische Achse verschiebt sich dann so weit, daß die ach-

sennahen magnetischen Flächen nicht mehr kreisförmig bleiben,

wodurch ß in das Stabilitätskriterium eingeht . Die von Mercier

berechneten Stabilitätsbereiche im ersten Quadranten einer

,ß -Ebene zeigen, daß ß im Tokamakstabilitätsbereich ober-

halb von t= 0 einige Prozent erreichen kann, im ersten der

höheren Stabilitätsbereiche oberhalb von 1+1 = 2 dagegen nur

noch einige Promille . Nicht nur die "Breite" des Stabilitäts-

fensters (auf der- bzw . -t-Achse) ist also kleiner, auch die

"Höhe" (bezüglich ß) ist erheblich eingeschränkt, sogar um eine

Größenordnung . Die Abschätzung (2 .38) für das maximal erreich-

bare Rennbahneß ist daher für das höhere Stabilitätsfenster un-

brauchbar, und somit scheinen Hoffnungen auf höhere ß durch Aus-

nutzung des höheren Stabilitätsbereiches nicht gerechtfertigt.

Hinzu kommt nun noch, daß die Auswertung des Mercierkriteriums

über den ganzen Plasmaquerschnitt auch eine starke Abhängigkeit

von der Stromdichteverteilung ergibt . Je nachdem, ob das Strom-

dichteprofil konvex oder konkav ist, d .h . ein Maximum oder ein

Minimum auf der magnetischen Achse hat, wird die Fläche des Sta-

bilitätsgebietes in der (,ß)-Ebene kleiner oder größer . Für

Stromdichteverteilungen, die in Achsennähe konzentriert sind,

kann das Stabilitätsfenster sehr klein werden, und zwar sowohl

der Breite als auch der Höhe nach, und nach Abzug der gemäß (B .13)

oder (B .14) wegen Ungleichgewichts verbotenen Zonen bleibt schließ-

lieh überhaupt nichts mehr übrig . Es gibt dann keine Konfiguration

mehr, die zugleich stabil und von einfacher Topologie ist . Ein

solches "Zuwachsen" des Stabilitätsfensters wie für kl>- 2 ist im

Tokamakstabilitätsbereich nicht möglich, denn nach (B .10) ist für

k

	

e 0 die Bedingung YZ1 immer erfüllt, d .h . die Nachbarschaft

des Ungleichgewichts bei

	

= 0 ist nicht so gefährlich . Im Falle

einer Rennbahn ist der höhere Stabilitätsbereich auch noch aus

einem anderen Grunde variabel . Die Größe des Fourierkoeffizienten

a 2 (oder eines beliebigen höheren Koeffizienten) hängt nämlich

sehr empfindlich von der exakten Geometrie der Kurvenform ab,

welche die Achse der Plasmasäule darstellt . Nach Tasse und

Mercier /9/ gibt es der Rennbahn eng benachbarte Kurven, für

die a 2 und der damit verknüpfte Stabilitätsbereich wesentlich

kleiner sind als für eine exakte Rennbahnkurve . Die Form der



5 0

Kurve kommt eben durch das Zusammenwirken aller Fourierkoeffizien-

ten zustande, während ein Stabilitätsfenster nur von einem Koeffi-

zienten abhängt . Geringfügige Abweichungen von der Rennbahngeome-

trie können daher das k = 2 Fenster zusätzlich verkleinern.

Es ist nicht auszuschließen, daß es gelungen wäre, mit einem noch

weiter verbesserten Harmonica-II-Experiment den Stabilitätsbereich

oberhalb von W = 2 nachzuweisen . Die Experimentiertechnik ist

inzwischen weiter fortgeschritten, und vor allem lassen sich die

experimentellen Ergebnisse nicht ohne weiteres auf ein Plasma mit

größerem Durchmesser übertragen . Falls man jedoch der MHD-Theorie

glaubt und die Größe des Stabilitätsfensters als Maß für die Sta-

bilität des Plasmas nimmt, sind nach dem vorher gesagten die Aus-

sichten gering, daß der Nachweis des + = 2 Stabilitätsbereiches

auch in einer Rennbahn gelingen könnte . Sofern das experimentell

erreichbare Rennbahnplasma überhaupt ein Stabilitätsfenster end-

licher Breite theoretisch erwarten läßt, ist es in der Obergangs-

phase bei der Erzeugung des Plasmas und während des Aufbaus der

Entladung schwierig, mit der Rotationstransformation in diesem

Fenster zu bleiben und das Durchqueren von Gebieten des Ungleich-

gewichtes und der Instabilität zu vermeiden . Nach Adam und Mercier

/13/ neigt das Plasma beim Durchschreiten der singulären --Werte

im Bereich der Konfiguration mit komplizierter Topologie zu star-

ker Turbulenz, und eine solche ist ja in Harmonica 11 auch beob-

achtet worden . Ungeklärt sind noch die Auswirkungen von Korrek-

turen zur MHD-Theorie, insbesondere der Einfluß eines endlichen

Larmorradius . Dieser kann das Stabilitätsfenster merklich vergrö-

ßern . Außerdem kommt es auch auf die Größe der unbekannten An-

wachsraten an . Wenn man gewisse kleine Anwachsraten als unschäd-

lich zuläßt, ist das praktisch verfügbare Stabilitätsfenster noch

größer . Es könnte daher reizvoll sein, den Tokamakstabilitätsbe -

reich versuchsweise zu verlassen, um experimentell die Frage nach

der Brauchbarkeit der höheren Stabilitätsbereiche endgültig zu

beantworten .
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