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Zusammenfassung

Das Transversalfeld eines Rennbahntokamaks im Gleichgewicht
wird flir Oberflichenstrdme und grolles Aspektverhidltnis Uber

das Biot-Savart'sche Gesetz berechnet und seine Zusammensetzung
diskutiert. Die Sprungstellen der Kriimmung lassen auch die
Vertikalkomponente springen und eine Horizontalkomponente ent-
stehen. Das Mercier-Kriterium fir lokalisierte Vertauschungs-
instabilitdten wird in Rennbahnachsenndhe und flir kreisférmigen
Plasmaquerschnitt ausgewertet und die destabilisierende Wirkung
der geraden Abschnitte sowie eines zusdtzlichen Torcidalfeld-
divertors untersucht. Der Tokamakstabilitidtshereich schrumpft
zugunsten der héheren Stabilititsbereiche, die jedoch praktisch

nicht verwendbar sind.

MHD~-Equilibrium and ~Stability in Racetrack Geometry

Abstract

The transverse field of a racetrack Tokamak in equilibrium is
calculated for surface currents and large aspect ratio via the
law of Biot-Savart, and its structure is discussed. The dis-
continuities of the curvature lead to jumps in the vertical
component and to the appearance of a horizontal component. The
Mercier criterion for localized interchange instabilities is
evaluated near the racetrack axis and for a circular plasma
cross section, and the destabilizing effect of the straight
sections and of an additional toroidal field divertor is in-
vestigated. The Tokamak stability region shrinks for the benefit
of the higher stability regions, but these are of no practical use.
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1. Transversalfeld eines Rermbahntokamaks im Gleichpewicht
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Bei einem gewOhnlichen Kreisbahntokamak kann man bekanntlich
Gleichgewicht auf zweil verschiedene Arten erzeugen. Ist die
Plasmasdule von einer leitenden Hiille eingeschicssen, dann kann
sie 1in einer gegeniiber der Hlillenseele nach auflen verschobenen
Lage im Gleichgewicht sein, woflr die in der leitenden Hiille
induzierten Spiegelstréme mafigebend sind. Winscht man jedoch
ein unverschobenes Gleichgewicht oder steht keine leitende
Hiille zur Verfiigung, dann mufl man ein zusdtzliches Vertikalfeld
geeigneter Stdrke und Richtung von auBlen anwenden. Und zwar ist
asymptotisch fiir grofles Aspektverh#ltnis A = %idas benStigte
Vertikalfeld durch die hi3ufig zitierte Formel von Schafranov

/1/ gegeben:

o{wg Z; a
}"%{*ai‘wﬁ (/%“§+3+ﬁ) (1.1)

Hierbei isi_ﬁg(a) das polecidale Feld nullter Ordnung am Plasma-
2 . e
rand, Ii —I%/BgZ&ﬂ die innere Selbstinduktion und

B = m5§-MA das mittlere poloidale B. Die Abhingigkeit von der
-3
By (2) tromdichteverteilung Uber den Querschnitt steckt

nur in Ii‘ Fiir Oberflichenstrime ist Ei = ¢, fiir eine {iber den
Querschnitt konstante Stromdichte ist Ii = %w

Bei einem Rennbahntokamak sieht es grunds#tzlich dhnlich aus,
nur sind die Verhditnisse wesentlich verwickelter. Die Ver-
schiebung der Plasmasiule innerhalb einer leitenden Hiille
hdngt dann nich% nur vom Aspektverhdltnis A und vom Lingen-
verhdltnis x = Zi ab, sie Zdndert sich auch als Funktion der
Bogenlénge 1§ngsoder Rennbahn, und sie hat auch eine Xomponente
nach oben oder unten, d.h. die Plasmasiule verschiebt sich aus
der Rennbahnebene heraus. Schematisch qualitativ ergibt sich
das in Fig. 1 skizzierte Bild. Die Verschiebung nach auflen ist
sowohl auf den geraden als auch auf den gekrimmten Abschnitten
ungefdhr konstant, auf den geraden Abschnitten jedoch um é?

grofler. Und zwar gilt in einem Oberflichenstrommcdell nach

Schafranov /2/ Z 2
3 b o«
5”5%“ ﬁ)

(1.2}




Dieselbe Formel mit a = O gilt nach Mercier /3/ in einem Volu-
menstrommodell fiir die Verschiebung der magnetischen Achse
innerhalb einer Plasmasiule von Rennbahnform mit Radius Ro und
Durchmesser 2b. Es handelt sich hier um
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Fig. 1

einen rein geometrischen Effekt, der dadurch bedingt ist, daf
die toroidalen Feldlinien auf der Innenseite der gekrimmten
Abschnitte dichter liegen als auf der Auflenseite, wihrend sie
in den geraden Abschnitten {iberall gleich dicht liegen. Eine
in der Ndhe der Torusseele verlaufende Feldlinie mufl daher
wegen der FluRkonstanz beim Ubergang von einem gekrlimmten zu
ginem geraden Abschnitt einen Sprung nach auflen machen. Um,é;
zum Verschwinden zu bringen genfigt es, den Sprung in den Feld-
linien des Vakuumfeldes dadurch zu beseitigen, dafl man die
Feldspulen, welche das toroidale Feld lings der geraden Ab-
schnitte erzeugen, um @ nach innen schiebt. Die Verschiebung
aus der Rennbahnebene heraus ist in den Quadraten I und III
nach oben, in den Quadraten II und IV nach unten und betrags-
miflig am gréBten jeweils an den Unstetigkeitsstellen der
Krimmung A, B, C und D. Dies wird auch durch die gepfeilte
Schraffierung der Plasmasiule angedeutet. Von der Seite gesehen
zeigt die Plasmasiule also das Bild einer liegenden Acht ©% .




Die genauen und nicht ganz einfachen Formeln fiir die Verschie-
bungen im Oberflichenstrommodell findet man bei Schafranocv /2/.
Eine Veralligemeinerung dieses Modells auf Volumenstrime ehen-
falls durch Schafranov /4/ setzt eine stetig veridnderliche
Kriimmung voraus und ist daher nicht ohne weiteres auf eine Renn-
bahn anwendbar. Eine drastische Anderung in den Verschiebungen
ist jedoch unwahrscheinlich.

Was nun eigentlich wieder viel mehr interessiert als die Ver-
schiebung der Plasmasiule innerhalb einer leitenden Hiille ist
eine Antwort auf die Frage, welche Hufleren Felder zus#Htzlich
anzuwenden sind, um ein unverschobenes Gleichgewicht ohne Zu-
hilfenahme einer leitenden Hiille zu erzeugen. Das bendtigte
Feld wird nicht nur eine vertikale Komponente haben, die in
den gekrimmten und geraden Abschnitten verschieden ist, es muf}
auch eine horizontale Komponente auftreten, also in der Renn-
bahnebene, welche die Verschiebungen aus der Ebene heraus kom-
pensieren kann. Im folgenden scll skizziert werden, wie man im
einfachsten Fall Formeln flilr dieses zus#tzliche Huflere Trans-
versalfeld herleiten und numerisch auswerten kann.

1.2 Modell und asymptotische Entwicklung des Transversalfeldes

Vorausgesetzt wird wieder grofles Aspektverh#ltnis, d.h.
Glieder htherer Ordnung in % = %;sind zu vernachldssigen. Die
Plasmasdule ist also sehr dinn, in Fig. Za ist sie der Einfach-
heit halber sogar nur als Faden gezeichnet. Auflerdem beschrin-
ken wir uns auf Oberflichenstrime jﬁ. Innerhalb (Index i} und
auBlerhalb {index e) der Plasmacoberfliche ist also mit Vakuum-
feldern zu rechnen, der Plasmadruck p ist innen konstant und
verschwindet aullen. Einen Querschnitt zeigt Fig. 2Zh. Das
Vakuumfeld auf der Achse oder Seele der Plasmasdule sei«&% {g?
das von den Oberflidchenstrimen dort erzeugte Eigenfeld sei
@gféig gﬁa . Dann beschreibt die Differenz a%xtféﬁ = '&‘f{ﬁm%fz@
die im Gleichgewicht bendtigten Hulleren Felder.

Bis auf Korrekturen héherer Ordnung ist damit‘égxt auch liber
den ganzen Plasmaquerschnitt bekannt. Kennt man alsc die Felder
und Strome im Gleichgewicht, so erhilt man durch Anwendung des

Biot-Savartischen Gesetzes
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Fig. Za Fig. 2b
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und daraus "%‘xt‘ Dabei bezeichnet # den Aufpunkt, flir ¢ =

also einen Punkt auf der Achse, und #' bezeichnet den Integra-
tionspunkt auf dem Plasmarand. In nullter Ordnung hat man ein-
fach ein zylindrisches Plasma, und die Felder sind

2/ 7 B Bl Blle) &
g0 - (BBl H Bl
‘g < og,

/ exl e
(1.4)




Ein Transversalfeld L#, existiert hier nicht. Die Gleichgewichts-
bedingung ist
P o«@ 0"?’/ _go ﬁazf
\ﬁgi‘ - & @Je}‘" ﬁ de k1 ‘§_4
\ﬁp@/ﬁ/} (T.S}

# =
) .z

wobei B = 2 p/Bwoz(a) das poloidale B ist.
In erster Ordnung werden die Zylinderflidchen des Koordinaten-
systems {g,w,&) gekrimmt. Die Kriimmung der Achse ist k(s} = -ém
auf den gekriimmten Abschnitten und k(s) = 0 auf den geraden

Abschnitten. Fourierreihenentwicklung beziiglich der Bogenlinge

s liefert P U 4

k(ﬁs};;&a 2

(1.6)
; 27 . el
MG ke, sin T
/ o flir gerades n = 2 m
Agh = fiir ungerades n
Das Lingenelement im gekriimmten Koordinatensystem ist
Z
< =
,a{gz¢f‘éa/w '1‘(//‘4‘“ eé/.,s,)fmsw//} ols (1.7)

das Fldchenelement alsc df = a(l-k(s) a cosw) dwds.

Die Felder lassen sich als Vakuumfelder aus einem Potential ab-
leiten, d.h. o= - V¢ mit A¢ = 0. Schafranov /2/ 16st die Po-
tentialgleichung und das Gleichgewichtsproblem im gekrimmten
Koordinatensystem in erster Ordnung in ke, wobei als Grenzbe-
dingungen an der Plasmacberfliche wie {iblich Druckgleichgewicht
und Verschwinden der Normalkomponente des Feldes benutzt werden.
Mit einem Fourieransatz filir das Potential erster Gleichung wird

o P & w*e@?rh
¢4‘,e=${;*¢§e$ X '*ﬁi'g %‘Né { ) (1.8)
wobei die ?m e Uber modifizierte Besselfunktionen von ¢ abhingen
und propertional }( sind. Hieraus folgen ciurc:h Gradientbildung
die Fel&ermgf o die Oberflidchenstromdichte 3 = Mg * {eé%’“ﬁi’) ja&
und das Plgenfeid $’ gemé’eﬁ (1.3). 5
Die waschenrechnungen sind in Anhang A nidher ausgefiihrt.

Wit betrachten zunichst den Fall eines XKreishahntorus mit

k(s) = Il{“ = konst. Dann ist x = O, g=y, T=20, k = {, und

o n¥o




das Vertikalfeld schreibt sich =~ durch Vereinfachung aus
(1.16),(1.17),(1.18),(1.27) - bis auf Glieder htherer Ordnung
in &~ in folgender Form:

o S
), p-J)#

Dabei ist ‘&: gx-ﬁtdie Binormale, in Fig. 2Za gestrichelt, und J

ist das Intagrai
/4#(@3}*’1} %II

= § [,4 +.2M-»5M;jj%f- (1.10)

Wit betrachten dieses Integral asymptotisch fiir grofie A. Man

(1.9}

ktnnte es flir £ = %".K & 1 mit Hilfe der asymptotischen Entwick-
lungen von elliptischen Integralen berechnen. Dieses Verfahren
148t sich aber nicht auf den Fall einer Rennbahn verallgemei-
nern. Daher wihlen wir einen direkten Weg. Sei 5(«(12«1 , & —»0,
QP-—&O iww-)w . Wir zerlegen das Integral in einen Anteil,
der von der Wirkung der Plasmaoberflichenstrdme in unmittelba-
rer Nihe des Aufpunktes y = O herrithrt, und in einen Anteil,
der zur restlichen und weiter entfernt }.i@genden Plasmaocher-
fliche gehbrt. VAN % aé« ) _,,g Sine

= _éf' {/A-.Z,}é,uﬁ”& &}3/-3 " (’g + S/ 0} 2z

%

< .2
= J "‘% 5{5%&” y)v’/z, 7 (’g‘-;xf}v‘zw}% (1.11)
Asymptotisch wird also '
. ?’ 202 otes - E’e 2ttt
Ty = et (,fwﬁ“"/-é

W

o fr (/ F+ m j]
&@ = “4?":’&;% "’/nff*

T 5 (1.12)
%, %
¢ . = fpal
wd e T -gdfméf o 73 !? A{”'?-' (1.13)

7
Damit haben wir N - “”"g”" ”4*&gﬁ (1.14})




und aus (1.9) folgt

o | _._,_q.;@g(g_ﬂ%ﬁ@)% .
A g0 02»@; < &

Dies stimmt mit der Shafranov-Formel (1.1} iiberein, wenn man

dort 1; = O bertcksichtigt. Der logarithmische Term hi#ngt offen-

bar mit der toroidalen Kriimmung der Plasmacberfliche in der Nihe

des Aufpunktes zusammen.

Nunmehr k8nnen wir zum Transverszlfeld des Rennbshntorus {iber-

gehen. Filir den Aufpunkt geniigt es aus Symmetriegrinden, sich

auf den ersten Quadraten zu beschrinken, also &£ ¢ éi%%‘

oder O£ Y& 4 {‘?-’rx) Der Integrationspunkt dagegen liuft selbstverstind-

lich {iber die ganze Torusoberfliche, also O<S L oder Oéy & 2a(1+x). Fir

das Transversalfeld é?- ergibt sich aus Anhang A zundchst (gedacht ist immer

an die Torusachse @ = 0):

L Zle(7 ) Ly d) Blrape) O

Die einzelnen Summanden werden im folgenden etwas niher betrachtet. Es ist

-+ 4
7.0) - wﬁ«-ww - £ IR ) - -4 25l
it \.S“/ij ,q’_jé:wjﬁ fﬁy }'{;“";}% (1.17)
Fir die Krlmmung an der Unstetigkeitsstelle nimmt man zweck-

mdligerweise das arithmetische Mittel des rechts- und links-
seitigen Grenzwertes an. Weiter ist

s Ftn)
f{ ,4)... Wﬁ?‘é’ A~cos (4 ) + cos g"( 7-7) (1.18)
2% o) ,4-“-?¢.2{4—~fw("§ﬁ*gﬁj«»&/fg,},m{ﬂjfﬂ)/rjﬁ}%{?.jfjﬁ&
~arfex

Dabei sind ¥ und T in Fig. 2 erklért, und gestrichene Gréfen
beziehen sich auf die Integrationsvariable. Analog dem Kreis-
bahnfall betrachten wir die Nachbarschaft des Aufpunktes Y
wieder gesondert und zerlegen das Integral gemiB

. +4 ?"/4%1}
PR JTCAVAY SR /9/?7 r? ) (1.19)

Gaedd ;"ﬁf }"‘"Af
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Wir nehmen an, daf entweder yé—-%’-ﬁy, y = % oder y,};_?%" +dy
ist., Hierzu wihlen wir Ay einfach als die Schrittweite, mit
der y bei der numerischen Rechnung veréndert wird. Dann gilt

y.}
e \Sfﬂyéz.

A cas [y’ x}
\Séjgﬁj 4342 (- a.s/f?’yjj& 54}5[/3*J’” ajj/& (o)

Das Auftauchen der Sprungfunktion S(y)} weist wieder auf die

Abhingigkeit von der toroidalen Krimmung in der Nidhe des Auf-
punktes hin. Falls ndmlich das Integrationsintervall ganz im
gekriimmten Teil der Rennbahn liegt, verschwinden T und T'.
Falls es ganz im geraden Teil liegt, ist ¢ = f’ = —%jund der
Z4hler des Integranden verschwindet. Und falls y auf die Un-~
stetigkeitsstelle fH11t, bleibt aus den gleichen Grinden nur
das halbe Integral fibrig. Gegeniiber Iy in {1.11) ist also ﬁz
durch Ay/2 zu ersetzen, und asymptotisch folgt entsprechend

wie frither

4
= - + e
s (xf«# fe EA /Q%/)Jé,} (1.21)
In den beiden anderen Integralen I und J, ist wieder A"Z zu
vernachlissigen, im Unterschied zu friher ist aber die Inte-
gration nicht mehr analytisch, sondern nur noch numerisch
durchfiihrbar. Wir haben also

e i

g A-cos (9" ?f*“fa:@’/?” ~7/ ;( j
o) [@z - cos{* ;oj.,»{w?, cos g TLTIAT T p ;” (1.22)

Da Ay im Gegensatz zu Ui nicht wirklich gegen null gehen kann,

J?“f'f r‘#/’

entsteht bei der numerischen Auswertung ein unbedeutender Feh~-
ler, im Falle der Kreisbahn z.B. ist die Abweichung von der
Schafranov-Formel nur

-&
e f/»jﬁ = 5. .40 f&fr A),=:Zf%;f“ (1.23)

was einer Aufteilung des Viertelkreisbogens in 100 gleiche Ab-
schnitte entspricht. Fiir den dritten Summanden in (1.16) er-
gibt sich zunichst
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ﬁ;faj/\ﬁ’w({;jwﬂhm )]/'/’caxﬂx %Jm.zzg) (1.24)

Dieser Term rlhrt unmittelbar von den Gleichgewichtsfeldern
erster Ordnung in (1.8) her und hingt {ther die Fourierkoeffi-
zienten kn wesentlich vom globalen Verlauf der Krimmung ab.
Das Argument der modifizierten Besselfunktion I ist dabei

lwna | e
L R, (H4x) A5}

und I,;' bezeichnet die Ableitung nach dem Argument. Fir n = 0

K, & = (1.2%)

erh8lt man das zugehérige Reihenglied durch formalen Grenziiber-
gang n—» 0. Um die Abh#ngigkeit von den verschiedenen Parame-
tern, insbesondere dem Sicherheitsfaktor

&

- g b 4 \@; - L 4 \.3 -‘33@
D T Bile)  hpenBla) | A Bl

besser hervortreten zu lassen, formen wir (1.24) mit Hilfe der

(1.26)

Gleichgewichtsbedingung (1.5) um, wodurch Bgio eliminiert wird,
und erhalten

v 'g[m»g “7/4‘%*7%74**‘7244‘,/;&‘//4*%{“4)
ffﬂﬂ%fmz;

(oot SR )

&7
wit L =1, /,45,,,&&;“) (1.27)

Asymptotisch fir grofie A ist dber 1-8 gegeniiber qZAZ{T+x}2
vernachlédssigen. Dann 14ft sich offenbar eine Reihe abspalten
mit 1-B als Faktor, wihrend die Ubrigbleibende Reihe kein &
mehr enthdlt. Sollte sich also B wihrend der Entladung #ndern,
genligt es, den abgespaltenen Teil des Transversalfeldes nach
Maligabe des Faktors 1-B anzupassen. Weiterhin ist es zweckméfBig,
die Reihensummationen dshingehend zu 4ndern, daB man die
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Glieder mit positiven und negativen n paarweise zusammenfalit,
so daB nur noch iber positive n zu summieren ist. Da nur die

. - 1 N _
geraden Koeffizienten kn =k, = R sin g3y von nulil ver

schieden sind, geniigt schon eine Sumfation Ober m. SchlieBlich
148t sich Ei noch durch IO und I, ausdriicken. Wir kénnen dann
die so abgeidnderte Reihe (1.27) zusammen mit (1.22) und (1.17)
o 1

L P

in (1.16) einsetzen und erhalten das endgllitige wrj
1.3 Diskussion_der_analytischen und numerischen Ergebnisse

Fiir das gesamte Transversalfeld ergibt sich die folgende
ttbersichtliche Zerlegung:

27 Zelel= [ £ 1,04 ) b fa) Flyo )
mit ﬁé - ,4&{- =l é&{j\§<})

?wqy/ Af“cWﬁﬁww?}+(ar¢jf?%;Zj
j%f'mﬁgj{‘gaél5;2{>¢“ﬁWJéwi?J*ﬁ%wy{ﬁm7@V?£ZZ}*{?537{}$Q

KGN
ya)
+ g veo +NjZ%jﬁgn?§£m]
yéﬁ)f
2E 4 A wm
gé? (¢/§}Z;£f;fhx 2?’£§; prr Aﬂ4%n€? "gﬁﬂﬁﬂtx cas wﬁka?
&4 _m;fimmm_ T, 2
i _—%W‘Z; A= 4om?g? N J’”ﬁ _]

_ i;£*£§? A ?€4%éﬁw)3 jf§%3u33x23; . I é&zz

Sr#y —— P g

w A gﬁ/ﬂxj [ ) 22 ’4{% j yovr . &w}
,y..gz, @

M 4 ';‘5__.)_2’ f&’?“"‘""’f&

St T
Waéﬁ& I,v j /,4{#;‘:&“) {(1.28])

Fiir x = 0 bleiben von £ =;éf gZ» nur £, und der erste (m = O)
Term von §3 tbrig, d.h. das Rennbahnfeld reduziert sich wieder
auf das Kreisbahnfeld (1GES}.§1 hingt offensichtlich von der
lokalen toroidalen Kriimmung ab und ;2 beschreibt Korrekturen

zu 5}, die durch die wechselseitige Beeinflussung der gekriimm-
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1 4

B=0,q=2, A= 3.5, f;ﬁh (3 - 1In 8A) S(y) = -2.832 S(y), x = 0.5

5 |4% B fs i f@ i

0 0.207] 0.634 0,081 -1.900 0

10y 0.210, 0,634 -0.019 0.081 0.005 ~1.897  -0.015
201 0.217] 0.636  -0.038 G.091 0.00% -1.888 -0.030
36 0,232 0.638  -0.057 0.080 G.012 ~1.872 ~0.045
401 0.2541 0.642 -0.076 0.089 0.013 -1.848 -0.064
501 0.287 0.646  ~0.085 0.087 0.006 -1.812 -0.089
60| 0.335; 0.652 ~0,113 0.085 -0.020 -1.760  -0.133
701 0.410] 0.658  -0.131 0.07¢  -0.101 ~1.685  -0.232
801 G.538) 0.666 ~0.149% 0.067 -0.327 -1.561 -0.476
8G 1 0.802) 0.674 ~0.166 0.037 -0.908 -1.320 ~1.074
811 0.845) 0,675  -0.168 0.032 -~0.985 -1.280 -1.163
921 O.89%6| 0.676 -0.170 0.026  -1.087 ~1.235 -1.256
831 0.953 0.677 -0.171 0.020 -1.183 -1.182  -1.354
841 1.021) 0.677 -0.173 0.013  -1.282 -1.120  ~1.455
85 1,103 0.678 ~0.175 0.006 -1.383 -1.045  -1.558
96 | 1.206) 0.679 -0.176 -0.003 ~1.483 -0.950  -1.65¢%
971 1.340} 0.680 ~0.178 -0.012  -1.578 ~0.,824  ~1.756
98 | 1.534) 0.681 -0.180C -0.022 -1.662 ~-0.639  ~-1.842
98 | 1.870| 0.682 ~0.182 -0.033 -1.730 ~0.313  -1.811
100 -0.659 ) 0.683 -0.183 -0.046  -1.759 -1.438 ~-1.942
101 ] -3.189 | 0.684 -0.180 ~0.058 =1.730 -2.563  -1.810
102 | -2.851 0.685 -0.176 -0.068  -1.663 ~2.236 -1.835
103 | -2.658 ] 0,686 -0.172 ~0.080 ~1.579 ~-2.052 -1.751
104 1 -2.523; 0.687 ~0.168 -0.085 ~1.485 -1.925  -1.653
105 | -2.420) 0.688 -0.165 -0.087 -1.386 ~-1.830  ~1.551
106 | -2.338 1 0.688 ~0,161 ~0.104  ~1,285 ~1.754  ~1.447
i07 1 -2.270} 0.68%  -0.158 -0.111 -1.186 ~-1.697 -1.344
108 | -2.212) 0.680 ~0.154 -0.117  -1.080 -1.639  -1.245
109 | 2,161 0.651  -0.151 -0.123 -0.99% -1.583 -1.150
110 | -2.117 ) 0.692 -0.147 -0.128  -0.912 -1.553 ~1.059
120 | -7.853 | 0.688 -0.111 -0. 158  -0.336 -1.312 -0.446
130 1 -1.731) 0.703 -0.074 -0. 169 -0.113 -1.187  -0.187
140 | -1.673 0.706  -0.037 -0.174  ~0.033 -1.141  =0.070
150 | -1.657 1 0.707 O =0.175 0 -1.124 0
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Die Formeln (1.28) sind zunichst fir £ = 0, g = 2, A = 3.5

und verschiedene x numerisch asusgewertet worden. Selbstver-
stdndlich kSnnen bei Bedarf auch andere Parameter fiir die
Rechnung benutzt werden. Die Ergebnisse fiir x = 0.5, woflr

also die geraden Abschnitte halb so lang sind wie die gekriimm-
ten, zeigt die Tabelle auf Seite 14. Als unabhidngige Variable
wirdiz% =w§9%yx verwandt, so daB die Unstetigkeitsstelle dem
Wert 2§§ = 100 entspricht. Das in der letzten Spalte stehende
Gesamtfeld ist in Fig. 3 noch einmal graphisch dargestellt.
Die Orientierung der Feldkomponenten in Richtung von - und -#
ist zu erwarten, wenn die Verschiebungen der Plasmasiule von
Fig. 1 nach auflen und nach oben kompensiert werden sollen.
Auffallig ist, dafl das Horizontalfeld in der Nihe der Unstetig-
keit der Krimmung Uberraschend groff wird und daBl das Vertikal~-
feld dort einen gewaltigen Sprung macht. Dieser Sprung ist je-
doch unrealistisch und hingt damit zusammen, dafl die nur flr
sehr groBle A asymptotisch gliltigen Formeln fir ein relativ
kleines A ausgewertet werden. In Wirklichkeit muBl der Feldsprung
ausgeglittet werden, so dall Abweichungen etwa in einem s-Inter-
vall von der Gréfenordnung des Plasmadurchmessers 2a zu beiden
Seiten der Unstetigkeitsstelle der Krimmung auftreten, oder fir
A = 3.5 umgerechnet etwa im Intervall go,éuggwsggzo. Dieser
Gldttungseffekt liefle sich grunds#dtzlich bei der Ausflthrung
aller im Laufe der Rechnung vorkommenden Integratiggfn ent-
sprechend berilicksichtigen und wilirde auch S{y)} in 3% (1.17)
stetig machen. Es miifte sich dann flir das Vertikalfeld etwa die
gestrichelte Tangente in Fig. 3 ergeben, die bemerkenswerter-
weise genau durch den berechneten Funktionswert an der Unste-
tigkeitsstelle geht. Sclche Anderungen wiren jedoch mit be-
trdchtlichem Aufwand verbunden und liefen {iberdies auf die
Beriicksichtigung von Termen h&herer Ordnung hinaus, die ja
ansonsten wie auch in der Schafranov-Formel stets vernach-
ldssigt werden. Insofern ist die Berechnung des Transversal-
feldes flir einen Rennbahntorus wegen der Unstetigkeit in der
Krtimmung noch nicht voll befriedigend. Flir die praktische
Erzeugung des berechneten Transversalfeldes kéinnte man evtl. die Divol-
felder von zwei helisch gewimdenen Leiterpaaren einsetzen, die einander

in Abhingigkeit. von der Bogenlinpe verstirken oder schwichen, um auf der
Rennbahnseele ein Feld der gewinschten Stirke und
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Richtung hervorzurufen. IZIwel weitere Leiterpaare wiren vermut-
lich fir den B-abhlngigen Anteil é% erforderlich.

2. Einflufl der Rennbahnkonfiguration auf das Stabilitdtsverhalten

2.1 Kriterien fiir lckalisierte Instabilititen

Wir betrachten im folgenden nur lokalisierte MHD-Instabili-
tdten in der Nihe der magnetischen Achse und flr einen kreis-
f&rmigen Querschnitt der magnetischen Flichen. Lokalisierte
Vertauschungs- oder "Flute'~Instabilitédten werden im Falle
eines zylindrischen Plasmas oder eines sehr schlanken Torus
durch das Suydamkriterium /5/ beschrieben, d.h.

<
A ,ﬂ”; " é?!*g ,> i (z.1)

ist notwendig und hinreichend fir Stabilitit gegen lokalisierte
Storungen. Im Xreisbahntorus mit Umfang @ds =L = ZIR, ver-

9]
wendet man anstelle von /u = ~%~ die Rotationstransformation
_ LoBe he =l RoBe o ien T

= TR gder auc = me = 5 a sic¢ er erste Term

im Kriterium (2.1}, welcher die stabilisierende Wirkung der
Verscherung ausdrilickt, bei Anndherung an die magnetische Achse
wie r2 verhdlt, der zweite Term hingegen wie Y (nicht r% wie
bei Schafranov /6/ angegeben), ist ein zylindrisches Plasma in
der Nihe der magnetischen Achse immer instabil, wenn p'¢ 0.

In einem Tokamak hat man 4.£ 1 oder der Sicherheitsfaktor

q = %;2@1. Das Suydamkriterium ist dann durch das Mercierkrite-
rium /7/ zu ersetzen, welches flr kreisfdrmigen Plasmaquer-

schnitt und Axialsymmetrie die einfade. Gestalt /6/:

Y ;‘Z, 62 i
v ;z t TGz (1Y Do @2

annimmt. Jetzt ist g » 1 hinreichend fiir Stabilitit gegen lo-
kalisierte Stdrungen, und diese Bedingung f3llt formal mit dem
Kruskal=-Schafranov-Kriterium fiiy helische "Kink"-Instabilitdten
zusammen. Wir sehen dabei von dem Sonderfall ab, dafi der Druck
auf der Achse ausnahmsweise kein Maximum, sondern ein Minimum

hat, was die Rolle der stabilen und instabilen Bereiche in
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(2.2) vertauscht. Man beobachtet also, dal erstens die Umgebung
der magnetischen Achse am schwersten zu stabilisieren ist, weil
dort die Verscherung keine Rolle spielt, und dafl zweitens eine
Stabilisierung dieser Umgebung im Sinne des Mercierkriteriums
sogar auf Stabilitidt des Plasmas gegen Kink-Instabilitidten
schlieflen 188t. Der Zusatzfaktor 1- qz kommt dadurch zustande,
daffi sich die magnetische Achse nach aufien in Gebiete schwiche-
ren toroidalen Feldes verschiebt, was einen magnetischen "well"
(Topf, Mulde) entstehen 148t. Es ist nicht klar, ob das Zusam-
menfallen der Stabilitdtsgrenzen fir lokalisierte und Kink-
Moden auch noch filir von der einfachen Kreisbahn abweichende
Formen der magnetischen Achse richtig bleibt. Jedenfalls ist
das Mercierkriterium, vor allem in der Umgebung der magnetischen
Achse, eine ziemlich strenge Bedingung, und es ergibt einen Sinn,
beliebig geformte magnetische Achsen mit Hilfe des lokalen
Kriteriums zu untersuchen. Wir fragen alsoc nach einer geeigne-
ten Verallgemeinerung der flr gewShnliche Tokamaks geltenden
Stabilitdtsbedingung q2>1, wenn die Krilmmung der magnetischen
Achse nicht mehr konstant, sondern beliebig variabel ist. Das
Gleichgewicht ist dann nicht mehr axialsymmetrisch, sondern
kann z.B. Rennbahnform haben. Denkbar wire auch eine rdumliche
Kriimmung oder Torsion, z.B. ein Figur-8~Stellarator, wir wollen
uns aber im folgenden nur auf ebene Konfigurationen beschridnken.

2.2 Stand der Theorie fUr nichtaxialsymmetrische ebene Konfigurationen

e e GO M el g WO W YO G S e A AR AL 5 S MO L e M 0 ke g g o O G i s o W o T O ki S e N W Sl e D R M ke WA S 5 S s e e e R S s S TR 4B S e

e i S . o A iy N 0 i s e i ol S S O N L

Eine sehr allgemeine Theorie flr beliebig gekriimmte
toroidale Plasmen mit elliptischem Querschnitt stammt von
Mercier /3,8/. Vorausgesetzt wird, daBl der Plasmaradius & klein
ist gegen den Krimmungsradius R{s}, sagen wir von der Ordnung &.
Dann mufll auch die Verschiebung $(s) der magnetischen Achse
gegeniiber der geometrischen Achse der Plasmasiule verglichen
mit a von der gleichen Ordnung £ klein bleiben, und es wird
méglich, das Stabilitdtskriterium statt auf die magnetische
Achse auf die geometrische Achse (Seele) zu beziehen, deren
Gestalt leichter beschreibbar und ven auflen vorgebbar ist.

Unter diesen Umstdnden hat das Mercierkriterium gemif /3/ auf
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der Torusseele und fir kreisfdrmigen Plasmaquerschnitt die
folgende Gestalt

A / é;gafk
Fla 675 [ 4 {ﬁ@/)@j § RYs)
“ﬁéélf_g\g/‘- ﬁ(’)]g//;a&j >0

Alle GréBen beziehen sich auf die Seele r = 0. Insbesondere

¢ hY
L_ztgj

spielt der Faktor

pri- g~ 25 £

dieselbe Rolle wie in {2.1) oder {2.2), wir setzen ihn wieder
als negativ voraus, so dafll auch die geschweifte Hammer in (2.3)
negativ sein mufl. j = (s) ist die Stromdichte auf der Seele,
B (s) das t9r01dale Hauptfeld wihrend der Quotient *i*
nlcht van der Bogenlinge s abhingt. Weiter ist

Rl) - Rls) ﬂ/x,f (2.5)
Hup f!«(’fuja&&
26 - pa “‘§XM&@ gﬁ’ff} i (2.6)

und XK(s} ist im +torsionsfreien Fall sogar eine Konstante,
ndmlich

é%{.{s‘jafj §-Jédf5:?§% ?f é”&63374;3£f(2.7)
Auffdllig ist der Resonanzpnenner in (2.6). Er fithrt zu einer
Singularitdt fir €, = n, alsc fiir eine ganzzahlige Rotations-
transformation auf der Achse. Das Auftreten dieser Singularitét
hidngt mit einer geometrischen Resonanz zusammen, bei der die n-te
Harmonische der periodischen Kriimmung immer in Phase mit der
nach MaBlgabe von %b rotierenden Feldlinie ist. Beil Anndherung
von %O an ein ganzzahliges n bleibt die Verschiebung 5(5} der
magnetischen Achse gegeniiber der Seele nicht mehr von der Ord-
nung & kiein, sondern wird immer grdfler und nimmt die Gestalt

L.

einer Helix mit der Periodenldnge = an. Fﬁr-%e, die zu nahe
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bei n liegen, ist der Durchmesser der Schraube so grofl, dafl
sie nicht mehr in die Plasmasiule hineinpafit, d.h. es ist

kein Gleichgewicht mehr méglich, jedenfalls keines mit einer
einzigen magnetischen Achse, welche die innerste von lauter
ineinandergeschachtelten toroidalen magnetischen Fléchen dar-
stellt. Die ganze Gleichgewichts~- und Stabilitdtstheorie, die
auf einer Entwicklung der MHD-Gleichungen in der Nachbarschaft
der magnetischen Achse beruht, ist daher an den Resonanzstellen
nicht mehr gliltig. Die Singularitidten von Z({s) fithren aber zu
einem Vorzeichenwechsel im Stabilitdtskriterium (2.3}, d.h. es
mufl jeweils auf einer Seite der Rescnanzstelle einen Stabili~
titshereich geben, wobei jedoch die Stabilitidtsgrenze %b = 1
einem Ungleichgewicht entspricht und daher nicht erreicht wer-
den kann. Das schrinkt die Stabilitdtsbereiche etwas ein, und
wenn sie zu schmal sind, kdnnen sie durch den dort fehlenden
Plasmaeinschluff sogar vdllig unterdrickt werden. Die Gleichge-
wichts~- und Stabilit#dtseigenschaften sind also untrennbar mit-
einander verkniipft.

Wir betrachten jetzt zunichst den Spezialfall, dafl das Magnet-
konst.

feld von der Bogenl&nge unabhingig ist, also B(s)
Dann ist auch der Durchmesser der magnetischen Flichen in der
Nachbarschaft der magnetischen Achse konstant, und (2.3} redu-

ziert sich auf .4 A 1
i L)
45"zt 5 e éﬁ?(ﬁs} 4 <0 (2.8)

. YT/ ] -
AL - Jae L5
vk~ - -g.zw;g W[g’j é £ (2.9)

In der Fourierentwickiung

L s .
Z a, e @r;n@f . 2 af o -J@*’g»{éj (2.10)
W{./} g - OO By & o CHP

setzen wir von vornherein woraus, dafl nur Fourierkoceffizienten

mit

@, mit geradzahligem n = Zm auftreten. Das gewdhrleistet auto-
matisch, dafl die Kurve, welche die Torusseele darstellt, auch
wirklich geschlossen ist /9/. Das Verschwinden der Fourier-
koeffizienten @, e bedeutet natiirlich, daB die ungeraden
Harmonischen ausfallen und damit auch die zu den entsprechen-
den Resonanzstellen gehfrigen Ungleichgewichte und Stabilitits-
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bereiche. Weiter ist die mittlere Krlimmung

“ﬁm>gmﬁéﬁx@g:§£
RG], L IR T L

und das mittlere Krimmungsquadrat

{(2.11}

4 4 -r"oﬁ * e aE &
= = Y = 3 2.12
("‘?'??”/’ *f?r’w S ,&,;{, &l e

Einsetzen von (2.10) in {(2.9) ergibt

St . g&ﬁ SO0 _ &
s * qgrﬂwjf
éﬁgj=df_ - DIty g “Q?é Lﬁ:g;o&%’ é
L e Lar it 3y iﬁ” ".Zan (e *m}“-é w?m ftr+01) Aj
} RS L “‘?”’"2"*”;
% “-gm”fné’

Uls) = ”"/JZ .Zw',;’«'é'«m) ¢ (2.13)

~Twin % B Dpid %
/szg jgéi’“& = "fif§¥2? éhréfvﬂd‘g ézjgz e N

e
RLe)

Leww

+O0 oy &a
yi _ rcd i
§ 4?2 ds = Lﬁg;@ 2[4 (2.14)

Damit schreibt sich das Stabilitdtskriterium (2.8) in der Form

2 |, |*

Vs o+ -
2oL o ey 245 5Tl <o

oder mit Hilfe von (2.7}

- !&g}z
ﬁz;z * {zg*@} {g > <0 (2.16)

ja,, |
F= 9% 4(/{'4?@} .25 W,,?) > A (2.17)

Die Theorie von Schafranov /6/ setzt von vornherein kreisf8rmi-
gen und konstanten Plasmaquerschnitt voraus und kann daher das
Mercierkriterium nicht nur auf der Achse selbst, sondern auch
in ihrer Nachbarschaft auswerten. Eine beliebige Stromdichte-

und Druckverteilung lber den Querschnitt der Plasmasfule ist




zugelassen. Der Plasmaradius mufl wieder klein gegen den Kriim-
mungsradius sein. Das Schafranov'sche Stabilitdtskriterium
verallgemeinert das Kriterium (2.2} und lautet

2
A
4 f?-‘f- ! r:a'*z (/4 ;/} ' (2.18)
zf~ﬂ 2
mic F= g? ,N,,,a /@] (2.19)
;,awm

Addiert und subtrahiert man hinter dem Summenzeichen F%jz, S0
kann man (2.12) benutzen und (2.719) in {2.17) {liberfiihren. Die
lokalen Kriterien von Mercier und Schafranov sind daher in dem
gemeinsamen Spezialfall, dall ein Plasma mit kreisfdrmigem und
konstantem Querschnitt auf der Achse betrachtet wird, identisch.
PQS T ist jetzt die Bedingung fir Stabilisierung durch den Ein-
flufl des magnetischen Topfes. Diese Bedingung ist hinreichend
fiir Stabilitdt der Plasmasiule gegen lokale Vertauschungsinsta-
bilitédten. Zwar kann auch die Verscherung mit zur Stabilisie~
rung beitragen, aber nicht auf der Achse selbst.

2.3 Einschrinkumg des Tokamgkstabilitdtsbereiches durch die Rennbahngeraden

o i a0 s S T o G B it s N B e o AP DY U A Al i S e e S G W N S YOS B i 2 i . e G0N DL G S e s e Pt DORL KA Rl D M\ S i s e P R s W 45 B s s i e . WD

Im einfachsten Fall enth#lt die Kriimmung neben dem konstan-
ten Glied nur eine h&here Harmonische mit X,=a = a d.h.
es gibt eine harmonische Modulation der Krimmung gemif

A Lres
= ey A q?ﬁ? EGE

Rés) ¢ ” L

Eine toroidale Maschine mit einem solcherart gekriimmten Plasma
nennt man "Harmonika n'. Die Funktion F in (2.317) hat in diesem
Fall die Gestalt

r- ?43(/ff¢~ qi:?% it ‘) >

2 .z
2 o % ,
oder + { A+ wz 2E-m T (z.21)
&

(2.20)

Fir @ = 0 haben wir wieder einen gewthnlichen axialsymmetri-




schen Tokamak mit der Kruskal-Schafranov-Bedingung qz,} 1 oder
%2 { 1. Dabei scheidet jedoch die unmittelbare Umgebung von
{2 = O aus, denn ohne Plasmastrom ist bekanntlich in Axial-
symmetrie kein Gleichgewicht und kein Einschliufl mdglich. Der
bekannte Tokamakstabilitdtsbereich liegt also ebenfalls in der
Nachbarschaft eines Ungleichgewichts. Fiir a%z,> 0 lassen die Ab-
weichungen von der Axialsvmmetrie einen neuen Stabilititsbereich
oberhalb der geometrischen Resonanz-%z = n2 entstehen, sagen wir
2< —{'2 < n2+ Anz, dessen Breite Anz mit dem Quadrat der Modula-
tlensamplltude(w zunimmt. Andererseits w1ré d&r Tokamakstabi~
litdtsbereich verkleinert, man schreibt g ,} qT|> 1. Die untere
Schranke gy fir den Sicherheitsfaktor q wird mlta% immer grifer.
Fir « 2;?»%a0 ist sie unendlich grofl und der Tokamakstabili-
tdtsbereich somit ganz verschwunden. Es bleibt dann nur noch der
zweite Stabilitdtsbereich Gbrig, der an das Ungleichgewicht bei
der hBheren Harmonischen anschlief3t. Variable Kriimmung kann also
nach Oberschreiten eines bestimmten Grenzwertes dazu fithren, daf
selbst flr beliebig grofle g oder kleine & der EinfluB des magne-
tischen Topfes fir die Stabilisierung nicht mehr ausreicht.
Betrachten wir nunmehr eine Rennbahn mit der Gesamtlidnge
L =£“0+i% = 2§7R0+£§, dann sind die Fourierkoeffizienten

2 2 . mrard,

P ﬁ‘gm # %ﬂ’égm = ;Z\ffﬁ 7 {(2.22)

Eine Rennbahn ist also nichts weiter als eine spezielle Uber-
lagerung von lauter verschiedenen Harmonikas, wobei zu jedem
der unendlich vielen &%2 ein entsprechender schmaler Stabili-
tdtsbereich gehért. Das mittlere Krimmungsquadrat ist flr
eine Rennbahn einfach

( } - _ 4"#’
"""'E'" L .z . Lils s und die Funktion F wird
zf, “.2'2
Z DL B
Fo= ? élég ? n‘%wgm —4*-3#»7)
Zy 4_ é.?; ; gm;rﬁ
= £ S o

F =g («2 7 > Lfﬁ;&, 3{4“4»,?3}) > A (2.23)

Fithren wir noch das Lingenverh#ltnis Eé-w x ein, dann ist
o
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= —-—= = 1+x, und F schreibt sich in der Form
L% Lo

Flye) = g tome oS 2550 ) 5 4 aao

Die untere frenze Gy des Sicherheitsfaktors im Tokamakstabili-
titsbereich ist jetzt eine Funktion ven x und 14Bt sich nume-
risch aus der Gleichung

F(?ré’*’/’, X) - =0 (2.25)

berechnen. Bis auf einen Fehler von héchstens 1% wird q?(x) durch
die folgende Niherungsformel beschrieben:

At O AEE s + 0008 27
of e ae

%({"} (2.26)
Eine graphische Darstellung zeigt die untem Xurve von Fig. 4
Bei Schafranov /6/ fehlt in der Formel (2.23) der Faktor A

a7l
vor dem Summenzeichen. Dadurch wird auch die (2.26) entsprechen-
de Ndherungsformel falsch (1.3x statt O. 1854} .

Auflerdem liegen

die hbheren Stabilitdtsbereiche nicht wie von Schafranov angege-

ben bei qz = ;, ;, %ﬁs ... sondern bei q2 = 1 ! ! !
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Das #ndert jedoch nichts an der Aussage, daB der Tokamakinsta-
bilitdtsbereich mit wachsendem x zugunsten der h&éheren Stabili-
titsbereiche zusammenschrumpft, g . a0 ., Der Tokamakinsta-
bilititsbereich verschwindet also vollkommen, wenn die geraden
Abschnitte ebenso lang sind wie die gekriimmten. Eine Rennbahn
kann nur dann im Tokamakbetrieb arbeiten, wenn die geraden
Zwischenstiicke beschrinkt bleiben, sonst wird der Stabilitdts-
bereich auf die hsheren Harmonischen verstreut. In diesem Zu-
sammenhang ist es vielleicht interessant, darauf hinzuweisen,
daff der einzige bisher gebaute Rennbahntokamak, das russische
Experiment TUMAN /10/, bezliglich der Stabilit#ét besonders un-
giinstig dimensioniert war, und zwar mit einem Lingenverhdltnis
x A 1. Das erklirt mbglicherweise einige der Schwierigkeiten,
mit diesem Experiment einen stabilen EinschluB zu erreichen,
wie insbesondere die gemessene Bohmdiffusion. Inwieweit die
héheren Stabilitdtsbereiche einer Rennbahn von praktischer Be-
deutung sein kbnnten, wird in Anhang B untersucht.

Zu bemerken ist noch, daf die Herleitung des Stabilitédtskrite-
riums eigentlich eine stetig verdnderliche Kriimmung voraussetzt.
Die magnetische Achse milRte sonst an den Unstetigkeitsstellen
einen Sprung machen, d.h. solche Gleichgewichte kénnen streng-
genommen gar nicht existieren. Trotzdem darf man auch die un-
stetige Rennbahnkrlimmung in das Stabilitdtskriterium einsetzen
und erhilt verniinftige Aussagen. Man kann n#mlich eine Folge
von Gleichgewichten mit stetig verdnderlicher Krimmung konstru-
jeren, welche sich der Rennbahnform immer mehr anndhern. Dann
konvergieren die zu dieser Folpge gehSrigen Stabilitdtsbereiche
sehr rasch gegen die aus dem Rennbahnkriterium errechneten
Stabilititsbereiche. Dies wird von Tasso und Mercier /9/ im
einzelnen gezeigt und rechtfertigt die Vorgehensweise.
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Wir betrachten nunmehr den Fall, dal das Magnetfeld auf
eine ganz spezielle Weise von der Bogenldnge s abhingt. Auf
einer der beiden geraden Strecken der Rennbahn sei genau in
der Mitte (s = 0) ein zylindersymmetrischer Toroidalfelddiver-
tor angebracht, der zu einer Schwichung des Magnetfeldes oB(3)
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auf der Achse fihrt und damit wegen der Fluflkonstanz zu einer
entsprechenden Vergrtferung des Querschnittes der magnetischen
Fldchen. Wir denken uns die Wirkung dieses Divertors auf den
Feldverlauf durch ein Mocdellifeld dargestellt, das von einer
einwindigen Spule mit dem Radius Rd erzeugt wird, deren (kleines)
Feld dem Hauptfeld entgegengerichtet ist. Ein schematisches per-
spektivisches Bild der Konfiguration zeigt Fig. S5a. Die Plasma-
sdule mufl man sich noch zu einem Torus erginzt denken. Fir das
Feld eines Kreisstroms 3@ mit dem Radius Ry gilt auf der Achse

Byl - _2,? {/,:!\; ST {/i »./:?/)4 B, (9 fld 2.2n

R AR A ¢ 3

Eeradentlinge » v3f,

Fig. 5b




Z2 6

Das Divertorfeld Bd nimmt also mit wachsendem Abstand /s/ von
der Divertorebene rasch ab und wird schliief3lich gegenfiber dem
Hauptfeld Bo vernachlidssighbar klein. Wir kdnnen die Ausdehnung
der durch den Divertor auf dem Geradenstlick der Rennbahnseele
gestdrten Zone durch eine willkiirlich festgesetzte "Divertor-

1§nge”.m“Ré kennzeichnen. Das Feld an den Enden des Divertors

ist dann
By (* Z%) YA 7 " 55 Y
Byl ft/j Z /) (,f‘* %fz:f/}% 5.5 Jo (2.28)

Selbstverstindlich mull der Divertor auf seinem Geradenstiick
Platz haben, d.h. die Divertorlinge mull in die Geradenlénge
hineinpasseﬁe Definieren wir einen dimensionslosen Parameter
durch & = §§ , S0 ist zu fordern

o
dr R, = m‘“ﬁda< Ly . Xéé - xa%,

(2.29)

oder kurz J .sf; %

Ein weiterer dimensionsloser Parameter wird zur Beschreibung
der Divertorstidrke bendtigt. Das Gesamtfeld ist

Bb) - B,-B4(5) - B, -BlJfE) - B, [1- )],

mit Y {%j
?ow\;‘ {7

@ kennzeichnet die durch den Divertor auf der Rennbahnseele

verursachte Welligkeit im Magnetfeld oder kurz den '"Divertor-
rippel™. Nun gewihrleisten zwar (2.28) bis {2.30}), daf die
Feldst8rung an den Enden s = # Eé'der vom Divertor beeinflufi-
ten geraden Strecke sehr klein ist, winschenswert wédre aber ein
Modellfeld, welches das Magnetfeld B(s) = Bo auf den gekrimmten
Abschnitten der Rennbahn Uberhaupt nicht stdrt und sich trotz-
dem tiberall physikalisch vernlinftig verh#lt, also stetig und
stetig differenzierbar ist. Ba sowohl das Dlvertorfeld Bé(s}
als auch dessen Ableitung Bd(s) fir s = + WK von null verschie~
den sind, addieren wir zu f{s) einen kleinen Korrekturterm
g{s), der gerade in s ist und zwei freie Parameter enthilt.

Am einfachsten ist ein biquadratischer Ausdruck:
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his) = fe)rals) = f) tasiibs? (2.31)

h :%&j = A'/féé—jw 0

Nach Bestimmung der Koeffizienten a und b der Biparabel erweist
es sich als zweckmiflig, die Rennbahngeradenlinge auf 2 zu nor-
mieren (Fig. 5b), d.h. wir schreiben das endgiiltige Divertor-
modellfeld als Funtion der dimensionslosen Variablen y = =
und verwenden statt h(s) eine neue Funktion h(y). Damit wird

das Gesamtfeld flr /y/ £ 1

BL) = -3, [4- zhty)] .
mit Az/}"j (’4%4?3}3/4 4+,é'2}"§f[ /2*35&};; +5/4*J‘jéz")y]
und%#f{s} ; #{i‘y} ~34% [(lzf+?,{f}/y¢f4¢ﬁa/§é}‘y ]

(7+% QJ4% éf*éfféé

wo x \ Z
ke T35 2 2
Das Gesamtfeld fiir /y/'§.1 cder /s/%-é% ist wie bisher konstant

gleich B . Wir kénnen nunmehr das Mercierkriterium (2.3} auf

so dal}

unser Divertormodellfeld anwenden. Eine wesentliche Vereinfa-
chung ergibt sich dadurch, daB} alle Integrale, die ?ﬂR(s) ent-
halten, von der Anwesenheit des Divertors unbeeinflufit bleiben,
Denn entweder liegt s in einem der U-Bdgen, dann ist zwar R{s)
endlich, aber B(s) konstant wie im Fall ohne Divertor, oder s
liegt in einem Geradenstiick, dann kann sich zwar B(s) &ndern,
aber 1/R(s} verschwindet und macht das Integral sowieso zu null.
Nur das erste Integral in (2.3) liefert einen gednderten Beitrag.
Wir benutzen wieder (2.7} und erhalten:
é Jt ., 38%)
gw 37 3% iy
g T o 3 L Y B Ys)ds
S 5 ) T e | F/a

Z( ke, L *‘g*/f* Gdifly , 3g° 44 j’ff[é 211 M/A}

‘*’éﬁz

7L 7% .3%}/32 T Ton A BY//3B,*
- 54 - 34;, (2*33)




Gehen wir jetzt entsprechend wie bei der Herleitung des Krite-
riums {2.17) vor, so stellen wir fest, daB die Eins in F > 1
durch die geschweifte Klammir vonisz 33} zu ersetzgg ist., Mit
h(y), H (y) aus (2.32) und —— T +?% = 1§x sowie Sw 2 er-
gibt sich fir das neue Krlterlum -1 ©

3% Sox ( %%
F> 4”“/4,&2(-&——«2 2o x STA- AR (230

Six Fpe whty)

¥

Fiir F ist dabei der Ausdruck in (2.24) zu verwenden. Da die
rechte Seite von {2.34) immer gréfler als eins ist, wird das
Stabilitdtskriterium durch den Einflufl des Divertorrippels
verschirft, und wir haben q?(x,fﬁ) 0) > aylx, & = 0). Die Ta-
belle auf Seite 29 zeigt fiir verschiedene Werte der Divertor-
ldnge 5@VRO und des Divertorrippels fﬁo in Abhingigkeit von
der Geradenlinge XJVRO die untere Grenze des Sicherheitsfaktors
9y im Tokamakstabilitdtsbereich. Diejenigen Felder in der
Tabelle, welche die Bedingung Jé;x verletzen wirden, sind leer,
ebenso die Felder, flr welche qAp unendlich groB wird und damit
nicht mehr existiert. Offenbar wéchst q4 flr konstantes x umse-
mehy, je grifer T0 und je kleiner & ist. Ein tiefer Rippel ist
alsc am gefihrlichsten, wenn er auch noch kurz ist. Das hingt
mit dem Vorkommen eines Integrals lber B‘Z{s) in (2.3} zusammen,
welches der Divertorlidnge umgekehrt proportional ist, was zu dem
Faktor % vor dem letzten Integral von (2.34) fihrt. Der ungln-
stigste gerechnete Fall, d = 0.1 und €= 0.25, ist in der oberen
Kurve von Fig. 4 graphisch dargestellt. Alle anderen gerechneten
Parameterwerte liegen in dem Bereich zwischen den beiden darge-
stellten Kurven. Die Ergebnisse sind in zweifacher Hinsicht re~
lativ erfreulich. Erstens wichst g4 wesentlich langsamer mit x
als von Schafranov urspringlich ausgerechnet, und zweitens ist
der zusitzliche unglinstige Einflul eines Divertors fast zu ver-
nachlissigen, sofern nur der Rippel in vernlnftigen Grenzen
bleibt. Fir realistische Parameter wie etwa x = 0.3 und 7= 10%
widchst Ao héchstens von 1 auf 1.28. Das wirkliche Divertorfeld
wird natiirlich nicht genau die angenommene Form des Modellfeldes
haben. Das beeintrichtigt aber die Brauchbarkeit der Ergebnisse
nicht, denn da im Stabilitfdtskriterium nur tber den Feldverlauf
integriert wird, kommt es auf die lokale Feldverteilung im ein-
zelnen gar nicht an, sondern nur auf globale Parameter wie J und 7.
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Zum Abschlufl wollen wir noch eine grobe Abschidtzung flir das
mit einer Rennbahnkonfiguration maximal erreichbare Plasma-8
angeben im Vergleich zu einem axialsymmetrischen Tokamak. Wir
gehen hierzu nach einem Vorschlag von Nihrenberg ganz dhnlich
vor wie in einer Arbeit von Lortz und Nihrenberg /11/, die den
Einfluf einer elliptischen oder dreieckigen Querschnittsform
auf das kritische g und das kritische B in axialer Symmetrie
untersucht, und zwar ebenfalls mit Hilfe einer Entwicklung in
der Nachbarschaft der magnetischen Achse. Wir haben statt dessen
Rennbahngeometrie, andererseits aber die Vereinfachung eines
kreisférmigen Plasmagquerschnitts, und wir kdnnen die Rechnung
flr das kritische B ohne Schwierigkeiten auf unseren Fall tiber-
tragen. Wie schon von Lortz und Nihrenberg hervorgehoben wurde,
gestattet es die Beschridnkung der Rechnung auf eine Umgebung der
magnetischen Achse nur, einen rohen Schitzwert fir B zu ermit-
teln. Das wahre kritische # fiir Gleichgewicht wird erreicht, so-
bald eine Separatrix die Plasmaoberflidche mit Radius v = a berilihrt,
und das wahre kritische § fir Stabilitdt wird spitestens dann
erreicht, sobald fir irgendein r £ a das Mercierkriterium ver-
letzt wird. Zur Bestimmung dieser R-Werte miflite man jedoch den
Gleichgewichtszustand des Plasmas Uber den gesamten Querschnitt
im einzelnen beschreiben und die radialen Profile von Druck und
Magnetfeld angeben. Wir begnligen uns daher mit der groben Abschit-
zung und kénnen aus diesem Grunde auch von den Modifikationen
durch einen Divertor absehen, da dieser ja,wie oben gezeigt, im
allgemeinen nur zu kleinen Korrekturen fihrt. Die von Lortz und
Nthrenberg zur Darstellung physikalischer GréBen benutzten Hama-
dakoordinaten (V, ©, ) lassen sich im Falle einer Rennbahn mit
Umfang L ausdriicken durch (V = Lif’}:’z, o, g’% S) , und wir kdnnen
das kritische B wie folgt abschétzen:

) - . 2
p= plo) (V) | Vinrs Lra 2559
Vieratae Vieroter
- A g2
RV i
_ brwtra) 4% . 44 A
= ?«ZL-Z ?243,&%;2(/‘/@?}2 44 ?"?ﬁv‘sz‘ (2.36)




Hierbei ist

-2 .95 . ‘@Jf [r=0) (2.37)
v5 97 Do

das Verh#dltnis des gewShnlichen mit der magnetischen Feldstirke
(FluBdichte) # gebildeten g-Werts zu dem entsprechenden mit der
élektrischen Stromdichte % gebildeten g-Wert. Fiir abnehmendes
Druckprofil mufl Q { 1 sein, und es beschreibt Q,> 0 einen para-
magnetischen, Q@ { O einen diamagnetischen poloidalen Strom. Das
gréoftmbgliche 8 in (2.36) wird fUr das kleinstmbgliche erlaubte
g erreicht, also flir qT(x} gemdB (2.26). Damit haben wir

Bl A 2

B, () (A4 0185 + 0.008 5] (2.38)

mit . A&
f% % R,
Bei festgehaltenem g~Verh#ltnis § und Aspektverhiltnis A = =
sollte das Verhalten von B(x) eine gute Vorstellung von dem
Einflufl der eingeschobenen Geradenstiicke auf das maximal erreich~
bare £ vermitteln. Speziell fir xw% ist auch @éﬁl%%, Wachsen-
des L, und g kénnen alsc § drastisch herabsetzen. °
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ANHANG

A. Herleitung des Transversalfeldes erster Ordnung mit Biot-Savart

Wihrend die Felder nullter Ordnung durch (1.4) gegeben sind,
gilt nach Schafranov /2Z/ fir die Felder erster Ordnung:

1T g a4 - J =%
By =50 ¢ S Y 7R
4 d
\@4:: Z, é’g cosw == ?4 (A1)

Die Fourierreihen fiir das Potential erster Ordnung sind aufBlen

und innen verschieden:

- - o0 v _
¢ . @éa . % Z ﬁﬁhg‘f@ e&/w Jf;.&)

oy D

= W&““mzzg (%j““*Jggg&&§j? jﬁ@”j;ﬁﬁggd¢;g é(f;;fi;
fm‘ = w&‘“’fﬁ \g:‘§ ""é 6;-2;/%”50)

Hon = T 7, (A.2)

Die Xonstanten A s Bn; Cn stehen dabei filir folgende Ausdriicke:

evz Ly
A=~ 3 {ﬁwf“j " Ho ¥ «gj% 7 2 /a/ s zyﬁa f!{:}
B la) - B]

R o oy | el I,
i o (8] ma By 1, + TES A2 Bl T L 1) ]
” “ﬁaj{/ “’} mﬁ»a@é

5
i

-]

é% “2%5

C, = i —F (A.3)
n" . I

Hierin sind alle modifizierten Besselfunktionen an der Stelle

J%na zu nehmen. Besondere Formeln mufl man flir n = O herleiten.

Es ergibt sich:




Yo agé'“‘ﬁ {“}{fﬁjﬁ _ﬁ“?& ‘_ﬁo.zl/}j Z,:z :;";{a)j j

und . == A4
;”0# =0 ( )

Zur Berechnung der Stromdichte j* an der Plasmacberfliche bend-

tigen wir nur Eaj{a}, Bsgia} und damitg%}&ﬂ‘ Durch Einsetzen von {A.3)

in (A.2) folgt:

ol o2 o
\@@ w‘gifé‘ w;,w“z:f

B () -, Beo
: YA \3&; - = -ib Bxe (A.5)
fﬁ&[/aj "'u {4 ‘&,“I) ¢ mz;"&“*

e (/a,j = J/{;, a’

LS ]

Diese Ausdriicke haben auch fiir n = 0 einen Sinn, wenn man sie
durch den formalen Grenzﬁbergang_z%a-mmﬁﬁ definiert. Dann wird

ndmlich P) 2
& &
2 ‘"ﬁ;& ~ \gﬁ?é’

Y
?QSﬁéj “ —i%;{%} (A.6)
@i la) = 0

Dieselben Ausdriicke folgen aber auch aus {A.4), wenn man dort
\g = a setzt. Wir brauchen daher im folgenden den Fall n = O
nicht mehr gesondert zu behandeln, der Term flir n = O folgt aus
den Termen fir n # 0 einfach durch lim oder Iim . Fir
die Felder an der Plasmaeberflécheiﬁﬁaf%%g n—s0

ergibt sich, wenn man cosw durch Re el crsetzt und fir k(s)
die Fourierreihe (1.6} einsetzt, die Darstellung

{/az,j 'ﬁg i fﬂﬁ{la,} e & /w-»@;,.s)

und

B () - Be 5 g’é"‘gﬁ ~e, ?”f“jjg L) (A.7)

szl

Hieraus berechnet sich der Feldstdrkensprung an der Grenzfliche

Zu
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o

A7 [87-2 ). - DB n, + A8,

+oe . _
prct Aﬁ&:w [\ﬁ’wz -Z df]m-'-'»’ ﬁigw%[f’»e/‘”/’“%;(ajﬁ ilw-x,3)

éaié

P DT & &
AB”-[B T-Bl] = Re X / &, (f e r‘@&‘)
o -4 J’sjwa’

o 2 P

%‘x”[ e (=) - 50#“(’“2] j d é‘{w.’%g 8)

und durch Einsetzen von (A.5) folgt

DB« -5 bya o, cos far-25)

b - Ca?

ivw ,é”a /8” Cos {w"&%’ﬁ-&’)

by oz O

¢ s «z-g 4
of = “@e“\%iwﬁuiﬂq “f' \%j (JW.VB‘ZMM;)
)

ﬁgfaj,x”%@§ K, & e d,

A B~

#

mit

P P oL Zz &
= \@éﬁw{“jw@&' 57 -ﬁ?ﬁ I"f
ﬁ” R - & (A.9)
Bola) -2, x,a L,

Diese Formeln sind fir die Obherflichenstromdichte zu verwenden:

?§¥ %g‘x‘ﬁ"g‘ ¥ %gx/ﬁ‘gwﬁw¢ﬁ'§%)g ﬁgw%:fvﬁ‘gjsww

. . wf & & -
- g [Bofe)+ MG [ [B2-Bl 0 88w 20
Es empfiehlt sich, alle Vektoren auf das feste Dreibein
("2‘&,%, s, ms) zu beziehen (Fig. 2). Offenbar ist
e, = 4 = Hy €05 P *%&anjﬁ
Sh o — »yg#‘;;ny-f =7 ao.;jo

H,E ~ frm oy + A cos w

&

L, Siw V“’"’ W~ P, C05p Sem s t P2y Los
’?ﬁg ¥ Bl Cok i 4 Ao sime v

s At Singp Cos s ¥ T, O3 @p Cos t F TLg Sim (A1)




Damit schreibt sich é& in der Form
j*’ *"1’4\]4 *"%j:z *”%Ji?
- %W{A\fw cos 4 wﬁ@&t}vfowf}vw}
+#, {’Aﬁw&}*?*ﬁ\% mxyﬁf%w/}
1:»?3;3{»»&@ c"axw’) (A.12)

s -%3 _ g : L g § = § -
Fir 4 = 5 {&ﬁ) ist ? ?(s 1 und Ags’w AB s, w[s } einzu
setzen. Wir kommen nunmehr zur Darstellung des B;fferenzvektors
4r-#' zwischen Aufpunkt (Torusseele) und Integrationspunkt

{(Plasmacberfliche) und schreiben:

I N AR PR

w's n,nv on, "4 »fs«g a (A.13)
Mit == .4 { {,) aus (A.11) folgt also
¢ Bl?
arear’ - ‘;fz.,(’y_,-r”*aw% c}alﬁasw)
4%4{ ¥y = cos ¢ m.sw}
(A.14)

+ T2y (/»w $ss w}
wnd ya/|2e (hon)ir b5 P a

t ol rmw[(&”%I)J’hﬁ’f“l’/fa“&j‘""" ?j] (A.15)

Z

Zur Berechnung von L gehen wir aus von
§

Ar, = ds cos yﬁ,’ ; a/’,'; = d&&,},fz/}/l , &f ﬂaﬁ;f}
5 < -

@{I&} = 5 a@’ﬁ‘ﬂf[’gj ) %f/!j x £d§”$,‘g;p/6jj 5@{5’} :{% (A.16)
& ¢ ’

Bei der Integration erweist sich die in Fig. 2 definierte Hilfs-
funktion T(s) als nlitzlich. Sie ist stetig, auf den gekriimmten
Abschnitten konstant und auf den geraden Abschnitten linear mit

dem Anstieg

27 -7 . /4B
aﬁs ‘ﬁ; { ¢ }
*% 2 f‘:«j) (A.17)
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Eine allgemeingliltige geschlossene Darstellung ist daher

d’Tw’ £ 5?/‘/3/’ @a -
" Tz / o) ’5) A9

ols

Damit wird £o8 Qf[{fj ot %9(/3}

"“m' Siw f’t/}/l LCos ?/Jj = W@’} ’?&

[w;yf}»&??ﬁk{] m?f}‘* d’f
o sm gls) | sin 59%5}{’%“ ) . _Smpl) (A9

R (s) Ko
und die gesuchten Stammfunktionen sind
5(0.; @é}x’fr = R, s %{‘}i
S ple) s = =R, /“’*‘ L) ?'}G/_’] (A.20)
also v-n! = &, /-"'”f”“"” ?,;}
by -ty = - x, ms;pwfw/;ﬁ”-#— /- ?}/} (A.271)

Fiir den Abstandsvektor 4/ #' ergibt dies die endgiiltige Form
e’ = m, 44%&/ wwgd}
= »fﬁ«,,’ﬁ J’”V Jm?v -f»ﬁ Jzﬁ?’ ("ﬂ.ﬁ’w)
+ My ’ﬁ / w.r;y*zwga 7’*7’ - mcm? cww)

t Py /pa_;fnw (A.22)

und !fk"df" = ﬁ @"‘ ch&xwﬁj% &
mit \gg.g/,ﬁ fasi/waf}v‘/m;jpwfwy//ﬁ‘fj* (47.:”?/’}-2
D= At aws(pg)teosy’(TT)

(A.23)

In einem Kreisbahntokamak ist speziell T= O, und es kann ohne
Beschrinkung der Allgemeinheit 5& = O angenommen werden. Daraus

folgtj&-#’/z” agﬁ?az(xfmmxﬁa’j(/’f’,%fa‘w)““z
(A.24)




§
Flir kleine ?' = g}m ist der dominante Term der Reihenentwicklung
o

>

}zs P 4,_,; casew] ¢ a (A.25)
&

|-

Ahnlich kénnen wir auch im Falle der Rennbahn verfahren. Falls
s und s' auf demselben gekrimmten Abschnitt der Rennbahn liegen,
verschwindet die Differenz T-T', und fir kleine ’s-s‘} folgt

{Mw#"!‘zx (Jm&’}z(/f“%céxw/’fva’a (4.26)

Fallk jedoch s und s' auf demselben geraden Abschnitt der Renn-
bahn liegen, verschwinden cose¢ und cos sa', wihrend ET»»’E“; =

e ¥
== ist, und fiir kleine |s-s'| folgt
G

Emwv’!zw (’J»&’j‘z% 2’ (£.27)

Daher gilt allgemein auller an den Unstetigkeitsstellen der
Kriimmung fir kleine éS“S'i die Schreibweise

Ewﬁ—#”{z = {J«s”}g/fwwz r:wwj val (A.28)

Wir kdnnen jetzt die einzelnen Faktoren im Integranden des

Biot-Savart'schen Gesetzes angeben und nach Potenzen von ﬁ—f‘i
entwickeln. Flir das Vektorprodukt folgt aus (A.12), (A.Z‘E}o

und (A.22):

4*'x RN P R

Y Y

Jo Ja Js

d, dy ds

w Py [A ‘gi;!/ffz“’:alj cos o - A@fa cos 50}»» A@w/a «r;}wfaﬂw?‘? wj

+ #y [”ﬁ@f/f%'ﬁ;’j cos o - A\@’aﬁmg’% AB fox?g{kf}yw]
*%3[ AB] R D, sr ew - ﬁ@wf‘@;@ ~AB « msw]

Hierbei ist D.f durch {A.23) erklirt und DZ durch

_ﬂ@ = “..s‘}n(/¢~ yi} + Sim ?,f‘/;n. ?"’j (A.30)

« 1 E
Die Terme Ags,w

miffiigsten in der Form

(A.29)

schreibt man, ausgehend von (A.9), am zweck-
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/ # / / .
AZ, = ﬁw“%cwxw 2:%‘5".5”?6{/
i i
NB - AB+ 2';;; cos W+ g Sin

5 s T Wg; ko =, [Ea!j‘fznf&{”&

. ¢

/gg ;Z 4{’“/3” fcw Jm?ﬁe’ﬁ

Im Nenner;&’*’i folgt aus {A.23) und (A.28), daB der Term mit
cos @ sowochl flr s-s' -~ RO als auch flr s-s'~~ 2 jeweils um

(A.31)

eine Ordnung kleiner ist als die Ubrigen Terme. Dzher gilt die

; (lﬁﬁ%a}{/ﬂg Jafy(’:;;«ﬁ

4 . A {if g?a'ﬁp¢wxaw52%u#
if"f"‘flff (ﬁ;z@.ﬁwz} % ®2D +a?

Entwicklung

(A.32)

Fiilr das Fléchenelement schliefllich folgt aus (1.7)

A (4 ZEE ) it ot (h.33)

das heiflt bis auf die Terme hdherer Ordnung in gﬁ ist

#I . adw s [ " FA, Dy )J?
;”‘"“’"’JF (ﬁf@‘*a‘z}‘% A- a cosw "{9*‘@3 '?(é} (A.34)

Wir kdnnen jetzt das Integral

< F
a6 \?fﬁ—y ,f
E: §3 X(/Mw#‘:j[*f“"qguw 'ﬁ'z%#w‘?% fﬁgfé‘;} jd’w {(A.35)
e &

nach Einsetzen von (A.29) ausfithren, wobei alle Integrale iber

ungerade Potenzen voy sinw oder cosw verschwinden, nehmen
hochstens Terme ~v ?i——z, also zweiter Ordnung mit und erhalten:

e

ﬁ - ’” Wd[é: {/f' j}”d\gaw(&gfigsz *%sﬁff;ﬂff
S LA - ¢
R2D, +at +’K’(f¢9’/) 43, //':? “'::"a//)]

-»‘»#w’[ [r r/f Aﬁa&mggﬁ &xa.mryff
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Hieraus folgt das gesuchte Eigenfeld durch Integration lber s':
&
& by
; a A als” . 4“}1 12 ols’
. = 2 Z é, ,?Z + Z ,@,
), 4 ] (R =P él»fpﬁ'(/ 029 +atP

Wir nutzen jetzt die Tatsache aus, daB der Nenner des Integran-

(A.37)

den von (A.37) stark singuldr ist. Der Hauptbeitrag zum Integral
stammt aus einer Umgebung des Aufpunktes s, filir kleine js’*sﬂ gilt
ja nach Vergleich von (A.Z3) mit [A.28):

2 ” ? .2 { A.38
Zﬁ%\g*@i}% [(5;{,,5,)2,@.“«2 T T e [4,,{%}1]3]@ (A.38)

Die Halbwertsbreite dieser Funktion ist etwa -% a, und fiir grofle

!s‘-—si verhilt sie sich wie Wi—mmg» . Wir kénnen daher im Zdhler

-

des Integranden nach Potenz&ésvoﬁ)s‘ws entwickeln und s'~s ~a
annehmen. Mit Hilfe von (A.16) bis [A.19) sowie aus {(A.21),
{A.23) und (A.30) ergibt sich fiir die Taylorreihen:

e
W * & ge

A ¢i3 F ?9 * (‘ax?
-2

/ - EIh NS
f&w{? = {@wf?’ ¢ W sayp

/ .
‘;,q__&/: — fﬁj? -(/J/mw;/'f,,, J {'z"’ﬁ = f.ﬂb?{i&'{“&} ...
2
JESRNN € T Ay De s, (A.39)
2 R, Rs) / < R

P~ .
Es gentigt, in fl Ausdriicke der Form a/’u(s"-s“)N mit /mwé Z zu
berlicksichtigen. Dann bleibt folgendes lbrig:

pod . & . L .
41 = %"ﬁ’[%g‘w”?’[&{’ﬁ} *-2&@% zw/wdm;p%) ‘*2;‘9&5?»??

a 3 (sts)*

”«ﬁ{j} "I [Jz,,\s)z‘;,a.z “f‘fd A@’Ja}s?ﬁ/fﬁ{-&}]

A

%4&_3 f[%c m;;ﬁ{&flwsj - »ZA@’@ Jzésgﬁ &z’a.;jp ;f‘(} - Z ‘ga cw?
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22 NS “‘sj +4/} A @tmx f-(/‘.r’l&}]

&) 2 (l.s‘ L )2 ra’
imr [ Sg R - 2BIRD, P S,
sz [ 3 _.L.___._":}z +/f/)$;a

'ﬁ/le ) (sts)% (A.40)

¢
Die durch (A.31) definierten Reihen %B brauchen also nur

¥

noch an der Stelle s ausgewertet zu we’rden,f’———pz . Es fdllt
-y

auf, daBl in ﬁa-ﬁg im zweiten Term D, nicht entwickelt wurde.

Das hat folgenden Grund. Wir kénnen asymptotisch fiir kleine

2 die vorkommenden Integrale wie folgt ve&reinfachen

G S5 a{s/ W a{
et — e - 4
A o @_,‘,W y
> 7
AN LR WL (A.47)
[sts) s
é[ z\ﬁ*aﬁa‘]@’& ist eine solche Vereinfachung je-

doch nicht méglich, das vereinfachte Integral wilirde gar nicht
konvergieren. Hier mull der korrekte Ausdruck zun#chst vollstin-
dig stehen bleiben und die Asymptotik etwas sorgfdltiger durch-
gefiihrt werden, was im AnschluBl an Gleichung (1.10) bzw. (1.18)
geschieht. Die Integration beziiglich s' ergibt also bis auf

N !
Terme hoherer Ordnung in o

é%é‘.‘ﬁ’ jag ‘g’%;[".Zé ;admy +Z%5 axj»yj»%
g ,,%[ 2AB asing - Z“$aafa$§ﬁ] <

e D <
%%”3[”2‘5%* % (ﬁz@wﬁ;}% *g; x z?

-4y
B a® I )j
Laamermlll Bt -*** 35 [(A.42)
Und mit {A.11Y, BA.31) und s
[ [
AL SRRy
J“wﬂxis}iiaﬁf/@ (4.,;0%}"-2 i o (/ 34&0»@ (454 3)




erhalten wir flir das Eigenfeld den folgenden Ausdruck:

G0
R f = -ﬁﬁ:%’-fg? 2 koo, (/wwws’f;wﬂ”&**gfax%x)

9{?5-9 b x - SC

’&[ B + e} _2%/! P
+ . o 7.7 Sihesd

2 z " L2 (A.44
o2 R, wﬁﬁw[ﬁzgﬁawfégzw 4RL) .44)

Offensichtlich ist -4 ABE = i(B:inze} das in (1.4} angegebene
J%igo‘ Die restlichen Terme stellen somit das gesuahteqﬁgig
welches rein transversal ist. Uns fehlt jetzt nur noch das im

Gleichgewicht auf der Seele des Plasmatorus tats#chlich vorhan-

dar,

dene Magnetfald«ﬁ%, und wir finden, ausgehend von (A.1) bis (A.3):

\Z}Z ”Q}?#:* Ke 5:?9 /Mﬁ&%\@; 441_2:?’(/_#”?2/}&5/4«"%”&}

oy e e G
&

B B e S [ G gl

2 # “?”g

& - @ ping ‘W'»?wf
\%-4 - \? ﬁfﬂw,&g&; &'\% ffww%’?@g“' z(/ As45}

o & . * “é
s s m ) é ’ﬁ{{s} & ”fﬁ,
Hieraus folgt fir & -—30:
. e .y o f d'[’wwﬁ’&&}
;%ifiﬁ = Wehgw {w;&i\@‘. *‘?{"’) e
& £ é £ i/w”x J’j -
i = AT} \3 e é"ﬁ/}e & o
ﬁw“f!ﬁ ﬁehgm (/w,, $é 2 ) @{fjﬂ O (A.46)

Binsetzen von €y und Verwendung von (A.11) ergibt daher:

- g o -
SOPRPI ) “ﬁf"*“/mﬁwmfwﬂﬁfﬁ

= j”w ._ié_'a.,\g" JMM’imm—_ (/-,—wx;;zwhx %J"cw’%,&)
pone M S 2L () (A% 47)

d%{? ist also ebenfalls rein transversal. Durch formalen Grenz-
ﬁbergangﬁna -3 folgt, dall das Reihenglied fiir n = O ver-

schwindet, in Ubereinstimmung mit {A.4). Das bedeutet, dal es
in e¢inem Kreisbahntorus aufgrund der Symmetrie {iberhaupt kein
a‘&éi gibt. Durch Zusammenfassen von (A.44) und (A.47) und Ein-

sgtzen von ex.n aus (A.9) erhalten wir nunmehr das im Gleichge-
wicht ben8tigte HuBlere Transversalfeld:
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Dieser Ausdruck wird fiir Gleichung {1.16) verwandt und im An-

schluf daran noch weiter umgeformt.

B. Verwendbarkeit der hdheren Stabilititshereiche einer Renn-

bahn verglichen mit Harmonica II
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Der erste der hbheren Stabilitédtsbereiche einer Rennbahn liegt
ocberhalb von }ti = 2. Es widre ein Vorteil, wenn man dieses Sta-
bilitdtsfenster ausnutzen kénnte, denn ein gréBeres 4 148t
einen hbheren Plasmastrom und damit auch eine bessere Chm'sche
Heizung zu, zumal dann auch die Abschitzung (2.36) flir das
kritische B wesentlich giinstiger ausfillt. Tatsidchlich gab es
schon einmal ein Experiment, das sozusagen eigens zur Untersu-
chung des Stabilitdtsfensters bei der ersten hdéheren Harmoni-
schen geziichtet war, nimlich das Experiment Harmonica IT im
franzfsischen Fontenay-aux-Roses /14-16/. Es hatte eine geome-
trische Achse mit der charakteristischen Gleichung

4 A #m:s/}
= A et .
¢?£&j 7 {/ told cos 7 (B.1)
a

Fir diese spezielle Harmonika war also 35 = 1, d.h. es trat

tiberhaupt kein Tokamakstabilit#tsbereich® auf, sondern einzig
und allein der Stabilitdtsbereich bei F%fQ»Z, Durch die gewdhlte
Abhdngigkeit der Kriimmung von der Bogenlinge hatte die Plasma-
sdule die Form einer Acht mit dicker Taille oder einer Gitarre




(::::::) . Der Umfang war 270 cm, der Innendurchmesser des
Pyrexgefdfies 5,5 cm und der Durchmesser des Limiters 2.8 cm, Das
Experiment war von Mirz 1966 bis Februar 1971 in Betrieb und
wurde in dieser Zeit viermal umgebaut, d.h. es liefen insgesamt
5 verschiedene Versionen. Hauptzweck des Experimentes war es,
die MHD-Theorie von Mercier /3,8,12,13/ zu testen, der zufolge
beigﬁf 2 kein Gleichgewicht bestehen kann und sich oberhalb
ein Stabilitétshereich anschlieflit. Nach Mercier ist in der Nach-
barschaft von}f!a 2 eine schraubenfdrmige Verschiebung der

#

Plasmasdule zu erwarten gemif
f’,ux uwﬁfi%%m mit ¢o= hwﬁ?“é&}fé?éﬂsz
<=
und sm= o, k=24, €=0 (B.2)

Die Verschiebung an den Stellen stdrkster Kriimmung ist jeweils
vom Krimmungsmittelpunkt aus gesehen nach auBlen, d.h. vom Torus-
mittelpunkt aus gesehen ist die Verschiebung an den stark ge-
krimmten Enden nach auflen, an der Taille nach innen. Daher war
ein Netz von helisch gewundenen Leiterpaaren zur Erzeugung eines
Transversalfeldes By —~ sing& vorgesehen, und zwar sogar mit
k=0, + Z und @G = 0, é%i Ein zweites #dhnliches, aber unabhidn-
giges Netz von verschraubten Leitern wurde als FluBlmeflschleifen
zur harmonischen Analyse des transversalen Flusses eingesetzt,
der bei einer Verschiebung der Plasmasdule durch das GefiR hin-
durchtreten mull. Hier wurden auch m = 2 und héhere k beriicksich-
tigt.

In den ersten beiden Versionen der Maschine Harmonica II ergaben
sich makroskopische Verformungen der Plasmasiule nicht in der Nihe
von }ff = 2, wo man sie theoretisch erwartet hitte, sondern in der
Nihe von Ft; = 1. Und zwar zeigten die Signale der FluBmeflschlei-
fen fir PlasmastrSme mit i%[ﬁh1 ein unregelmidfiiges Zacken- und
Spitzenmuster im Oszillogramm. Mdglicherweise war hier einfach
die Kruskal-Shafranov-Grenze beobachtet worden, aber iber die
Stabilitdt von nichtaxialsymmetrischen Anordnungen gegen Kink-
moden ist theoretisch nichts bekannt. In den letzten beiden Ver-
sionen der Maschine wurden die experimentellen Randbedingungen
besser definiert durch Einbau einer stabilisierenden Kupferschale
sowie Vergoldung der Innenseite des Pyrexgefifles. Jetzt traten
die singuldren FluBschwankungen tatsi#chlich fir
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ﬁﬂﬁtz auf, und zwar je nach der Plasmastromrichtung (15%3 0)
ganz iiberwiegend auf einer k = -2 oder k = +2 Schleife. Nicht
nur der Drehsinn der helischen Plasmas#ulenverschiebung folgte
der Rotationstransformation, auch die Phase stimmte mit der
theoretischen Erwartung iiberein. Aullerdem hatten die aus mag-
netischen Sondenmessungen gewonnenen Verschiebungen der magne-
tischen Achse fir 2 < y%§< 4 die theoretisch vorausgesagte
GréBenordnung von etwa 5 mm. Mit dieser Modenanalyse sind aber
die Erfolge des Experimentes bereits erschépfend behandelt. Es
war unter den gegebenen experimentellen Bedingungen nicht mbg-
lich, die Existenz des htheren Stabilitidtsbereiches nachzuwei-
sen., Vielmehr beobachtete man eine starke Plasmawandwechsel-
wirkung, welche alle Erscheinungen lberdeckte. Schmierbilder
zeigten ein von Anfang an Uber den ganzen GefiBquerschnitt
leuchtendes Plasma. Die Strahlung rithrte von Verunreinigungen
her, und das Plasma erreichte hdchstens eine Elektronentempe-
ratur von 10 eV, Der Limiter spielte praktisch iliberhaupt keine
Rolle, und auch das Anlegen von Transversalfeldern hatte keiner-
lei Einflufl auf Gleichgewicht oder Stabilitdt des Plasmas. Die
Kupferschale trug hierzu chnehin nur wenig bei, da die durch
k:} 2 Verschiebungen hervorgerufenen Spiegelstrdme zu stark ge-
dimpft werden. Offenbar war es nicht méglich, die #ulleren
Transversalfelder so genau wie ndtig einzustellen, um das
Gleichgewicht zu beherrschen. Die Plasmasdule hatte immer
Wandkontakt, und das Gleichgewicht kam Uberhaupt nur durch die
Wechselwirkung mit der Wand zustande. Solche Gleichgewichte sind
theoretisch schwer zu beschreiben und praktisch uninteressant.
Durch die Plasmawandwechselwirkung #nderte sich im Laufe der
Entladungen auch die Oberflichenbeschaffenheit der inneren Gefidfl-
wand, sie "alterte', und nach 3000 bis 5000 Schiissen konnte man
trotz Vergoldung lberhaupt keine verniinftigen Messungen mehr
machen, die Fluflsingularitidten £fir ﬁ%§$&2 waren nicht mehr iden-

tifizierbar.
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In Barmonica II ist es nach B.! zwar gelungen, das Ungleichge~
wicht bei |+] = 2 nachzuweisen, nicht aber das oberhalb daran
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anschliefBende Stabilitdtsfenster, und daher konnte man dieses
auch nicht nutzbringend verwerten. Mit einer Rennbahn ginge das
noch schwieriger, wie ein zahlenméfliger Verglelcg der Breite der

&
Stabilitdtsbereiche zeigt. Aus (2.21) folgt fir B A
&, &
A+ 4
/4437@% > A (B.3)

Ber Rand des Stabilitdtsbereiches ergibt sich also aus der

Gleichung

F 2
9’“““? -5 =0

N 49 7 v 7 ufim
?" “"’(w)?gz;— A *ex z " 773

2 ALE
t 7= o, =L (8.4)
Der fir die Breite des bei i%ﬁ = 2 liegenden Stabilitdtsberei-
ches einer Rennbahn mafigebende Fourierkoeffizient a, ist gemil
(2.22} am grofiten fir L = 2 LO oder x = 1, d.h. genau dann,
wenn der gewbhnliche Tokamakstabilit#dtsbereich gerade verschwun-
den ist. Fir diesen Fall folgt aus (2.24):

. 2 PnF

g ] ~Ssev 2 2 ) 4
(B.S5)
£§; hﬂzfyLéhw?d) ? 7% 4@¢?ﬁ ;>

Fiir den Rand des Stabilitdtsbereiches haben wir also jetzt die

Gieichung

g ( Tz +4) - 4
4&/44;%/) . ] = 237

{B.6)

Die Zahlenwerte (B.4) und (B.6) fiir |+ decken sich mit den An-
gaben von Tasso und Mercier /9/. In einer Rennbahn ist also der
erste der hoheren Stabilitdtsbereiche héchstens halb so breit wie in
Harmonica II, némlich 0.37 statt 0.74.

In Wirklichkeit liegen die Verhdltnisse noch unglinstiger, denn
in einer gewissen Nachbarschaft der Resonanz pti = 7 1st ja

gar kein Gleichgewicht mbglich. Fine Theorie von Mercier /12,13/
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gestattet es, mit Hilfe eines besonders angepalten Modells,
quantitative Aussagen hieriiber zu machen. Wenn< in der Nihe
einer ganzen Zahl k liegt und der zugehfrige Fourierkoeffizient
8y # 0 ist, dann kann man nach Mercier alle Reihenglieder mit
Ausnahme von ay auller Acht lassen und statt des wirklichen to-
roidalen Plasmas (als eben vorausgesetzt) ein Bildplasma be-
trachten, welches die Gestalt einer Helix mit der Kriimmung

% = ap und der Torsion % = g—%grhat° Mit Hilfe dieser Methode

der "helischen Bilder' (images hélicoidales) und durch Ausnut-
zung der helischen Symmetrie kann man spezielle diffuse Profile
zugrunde legen und analytisch durchrechnen. Auf diese Weise
gewinnt man eine vollstidndige Beschreibung des Gleichgewichts

in der Nihe der Singularititen und im Anschlufl daran auch eine
verbesserte Stabilitdtsrechnung. Je nach der studierten Resonan:z
hat man ein anderes helisches Bild. Der Ubergang vom wirklichen
toroidalen Plasma zum helischen Bildplasma ist insbesondere

gekennzeichnet durch
-k

_ Lhkrs .
& 7 (8.7)

[}

< ““““Hb‘f

]

g — &

2% = 0 bezeichnet die der Helixachse zugewandten Innenseite der
helischen Plasmasiule, ¥ = # die AuBenseite. Mit abnehmendenm v
verschiebt sich die magnetische Achse immer weiter nach auflen
in Richtung zg==2?’, solange bis schlieBlich kein Gleichgewicht
mehr méglich ist. Die magnetische Achse beschreibt also eine
ebensolche Helix wie die geometrische Achse, nur mit grofierem
Radius, so dafl die magnetischen Flichen exzentrisch werden. Fir
das eigentliche toroidale "Urbild"-Plasma bedeutet dies

& -~ = 2k#’s/L, d.h. die magnetische Achse dreht sich bei sinem
Umlauf um den Torus k-mal um die geometrische Achse, und der
Schraubenradius nimmt mit AnnZherung von <t an k zu.

Mercier untersuchte eine spezielle Klasse von Konfigurationen
mit parabolischem Druckprofil (linear in der FluBfunktion},
kreisfbrmigem Plasmaquerschnitt (Plasmaradius rp = a} und grofiem
Aspektverhdltnis. Angenommen wurde insbesondere

, Lra - 7.%5 __ 4
Gar S~ g ~E /ﬁ 52 £

(B.8)
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Das Magnetfeld ist konstant bis auf G(g?)s‘t in (B.7) bezeichnet
die mittlere Rotationstransformation bis auf G(é?), und als Rand-
bedingung mufl die Flufifunktion auf der Plasmaocberfldche konstant
sein und der Druck dort verschwinden. Selbstverstidndlich muf
auch ﬂz¢i§ sein, sonst hat es keinen Sinn, Krimmungseffekte in
nullter Ordnung Uber das helische Bild zu berlicksichtigen. Die
nullte Ordnung ist aufler in der Nachbarschaft der Singularititen
einfach ein zylindrisches Plasma, etwa wie bei Shafranov /6/.

ﬁz darf aber aguch nicht zu klein werden, sonst ist kein Gleich-
gewicht mit nur einer magnetischen Achse mehr mdglich. Die ana-
lytischen Ausdriicke vereinfachen sich betr8chtlich, wenn man
eine Stromdichteverteilung betrachtet, die bis auf einen Term
~ cos 7% konstant ist. Dann gilt nach Mercier

fﬁ; i (/’7‘*&2/]{/4—‘;»4’(@5’2%} y **"""E.g (B.9)

Y= aéa(/«-gqﬁg-ﬁ ..Z_‘m}:z?é“—) (B.10)

mit
B

Offenbar mul » £ 1 sein, der Plasmadruck kann ja niemals negativ
werden, 4 ist eine Art Plasmaverformungsparameter, denn fiir

» 0 verschiebt sich das Maximum der Druckverteilung und damit
die magnetische Achse nach auflen in Richtung A=z Ist die
Gleichgewichtshedingung » £ 1 nicht erfiillt, dann wird die Topo-~
logie der Konfiguration komplizierter, und es treten mehrere
magnetische Achsen auf. Die Berechnung der Nullstellen von

%‘j ergibt fir die Lage der magnetischen Achse
LA v = ~ At At Iy
o
=R (B.11)
also x_ = :gw er » L7
und A ¥ =
Ky T 3 jﬁa’ ¥ o= ﬁf

Die maximale Verschiebung der magnetischen Achse gegeniiber der
geometrischen Achse ist also %— a. Wir wollen einmal fiir B = 0
und k = 2 ausrechnen, wie kiein 'Pz = 4-2 h&chstens werden darf,
bevor » 4 1 verletzt wird. Aus (B.10} folgt

r- e ffe2)- 1

?gw: P’ — (B.12)
& &




Fiir Harmonica II ist a, = a = 5, L = 270 cmy, a = 2.75 cm.

L <
A e ol 7 = 043 (B.13)

7 Tra & S5 T F
) sinerglL 1
Fiir eine Rennbahn mit L = 2 Lo ﬁSt a, = 3~Ro = jWRO‘
Das Aspektverhiltnis sei A = 59; = 3,5,
4 b

4 = = &= &%g {3014)

Py 4 A _ A C

? Ma - ;,j;:“ \345?’ r-a

Der tatsichlich verflighare Stabilititsbereich von Harmonica II

ist also gemdfi {(B.4) und (B.13) gleich 2,74 - 2,13 =

0,61, der

entsprechende Bereich der ins Auge gefafliten Rennbahn bei der er-

sten hoheren Harmonischen dagegen ist gemdfl (B.6} und (B.14)

gleich 2,37 - 2,19 = 0,18,

d.h. gegeniiber Harmonica I1I betridgt

die Breite des Stabilititsfensters der Rennbahn etwa 30%.

Auch dieses Ergebnis diirfte noch zu optimistisch sein, wie eine

genaue numerische Auswertung des Mercierkriteriums auf achsen-

nahen magnetischen Flichen im Modell der helischen Bilder zeigt
/12,13/. Fiir kleine » und kleine § ist das Stabilitdtskriterium
in der Nihe der k-ten Resonanz durch das dominante Reihenglied

von (2.19) gegeben:

j’w 'sf' &7 :g, }
by ONF '#*ﬁ

«&zéwy nr"é

/ /

* W‘z
A é-,:?jg »éaéa > % /é¢?/$

7)Y

Fiir » 11 dagegen ist dieses
Rotationstransformation ist
tther den Plasmaquerschanitt,
Achse wesentlich gréfler als

kritische Resonanz zuerst eintritt.

(B.15)

-at <
Kriterium nicht mehr anwendbar. Die
dann nicht mehr nshezu konstant
sondern ist auf der magnetischen
am Rande, wo +4 k& geht und die
Das bewirkt eine starke

Verscherung. AuBerdem wird die mittlere magnetische Senke we-

sentlich vertieft.

Die damit verbundenen stabilisierenden Effekte

niitzen natiirlich nach Uberschreiten der Gleichgewichtsgrenze

# = 1 nichts mehr.

Auch fur groBe B gilt (B.15) nicht mehr.
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Die magnetische Achse verschiebt sich dann so weit, daff die ach-
sennahen magnetischen Flichen nicht mehr kreisfdrmig bleiben,
wodurch f in das Stabilitdtskriterium eingeht. Die von Mercier
berechneten StabilitZtsbereiche im ersten Quadranten einer

(?,3) -Ebene zeigen, dafi f# im Tokamakstabilitdtsbereich ober-
halb von 4= 0 einige Prozent erreichen kann, im ersten der
hoheren Stabilititsbereiche oberhalb von }%{ = 7 dagegen nur
noch einige Promille. Nicht nur die "Breite” des Stabilitits-
fensters (auf der’?u bzw. t-Achse) ist also kleiner, auch die
“"H8he' (beziigiich 8) ist erheblich eingeschridnkt, sogar um eine
GréBenordnung. Die Abschédtzung (2.38) fir das maximal erreich-
bare Rennbahn-8 ist daher flir das h8here Stabilititsfenster un-
brauchbar, und somit scheinen Hoffnungen auf hdhere 8 durch Aus-
nutzung des hbheren Stabilitdtsbereiches nicht gerechtfertigt.
Hinzu kommt nun noch, dafl die Auswertung des Merciervkriteriums
iiber den ganzen Plasmaguerschnitt auch eine starke Abhingigkeit
von der Stromdichteverteilung ergibt. Je nachdem, ob das Strom-
dichteprofil konvex oder konkav ist, d.h. ein Maximum oder ein
Minimum auf der magnetischen Achse hat, wird die Fliche des Sta-
bilitdtsgebietes in der {?,Sanbene kleiner oder griBer. Flr
Stromdichteverteilungen, die in Achsennihe konzentriert sind,
kann das Stabilitdtsfenster sehr kiein werden, und zwar sowohl
der Breite als auch der HShe nach, und nach Abzug der gemifl (B.13)
oder (B.14) wegen Ungleichgewichts verbotenen Zonen bleibt schlief-
lich tiberhaupt nichts mehr tbrig. Es gibt dann keine Konfiguration
mehr, die zugleich stabil und von einfacher Topologie ist. Ein
solches "Zuwachsen' des Stabilitdtsfensters wie fir k|$ 2 ist im
Tokamakstabilitdtsbereich nicht méglich, denn nach (B.10) ist flr
k = B = 0 die Bedingung »{1 immer erfitllt, d.h. die Nachbarschaft
des Ungleichgewichts bei 4 = 0 ist nicht so gefihrlich. Im Falle
einer Rennbahn ist der héhere Stabilitdtsbereich auch noch aus
einem anderen Grunde variabel, Die Gr#fle des Fourierkoeffizienten
a, (oder eines beliebigen hdheren Koeffizienten) hingt nimlich
sehr empfindlich von der exakten Geometrie der Kurvenform ab,
welche die Achse der Plasmasiule darstellt. Nach Tassoc und
Mercier /8/ gibt es der Rennbahn eng benachbarte Kurven, fir

die a, und der damit verknipfte Stabilitdtsbereich wesentlich
kleiner sind als flr eine exakte Rennbahnkurve. Die Form der
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Kurve kommt eben durch das Zusammenwirken aller Fourierkoeffizien-
ten zustande, wihrend ein Stabilit#tsfenster nur von einem Koeffi-
zienten abhingt. Geringfiligige Abweichungen von der Rennbahngeome-
trie k®nnen daher das k = 2 Fenster zusHtzlich verkleinern.

Es ist nicht auszuschlieBen, daBl es gelungen wire, mit einem noch
weiter verbesserten Harmonica-Il-Experiment den Stabilitdtsbereich
oberhalb von %%1 = 2 nachzuweisen. Die Experimentiertechnik ist
inzwischen weiter fortgeschritten, und vor allem lassen sich die
experimentellen Ergebnisse nicht ohne weiteres auf ein Plasma mit
gréBerem Durchmesser {bertragen. Falls man jedoch der MHD-Theorie
glaubt und die Gréfie des Stabilitdtsfensters als MaR fir die Sta-
bilitdt des Plasmas nimmt, sind nach dem vorher gesagten die Aus-
sichten gering, daf der Nachweis des < = 2 Stabilitdtsbereiches
auch in einer Rennbahn gelingen kénnte. Sofern das experimentell
erreichbare Rennbahnplasma Uberhaupt ein Stabilitdtsfenster end-
licher Breite theoretisch erwarten 14Bt, ist es in der Ubergangs-
phase bei der Erzeugung des Plasmas und wihrend des Aufbaus der
Entladung schwierig, mit der Rotationstransformation in diesenm
Fenster zu bleiben und das Durchqueren von Gebieten des Ungleich-
gewichtes und der Instabilitdt zu vermeiden. Nach Adam und Mercier
/13/ neigt das Plasma beim Durchschreiten der singuldren t-Werte
im Bereich der Konfiguration mit komplizierter Topologie zu star-
ker Turbulenz, und eine sclche ist ja in Harmonica II auch beob-
achtet worden. Ungekldrt sind noch die Auswirkungen von Korrek-
turen zur MHD-Theorie, insbesondere der Einflufl eines endliichen
Larmorradius. Dieser kann das Stabilitdtsfenster merklich vergrd-
Bern. AuBerdem kommt es auch auf die Gréfe der unbekannten An-
wachsraten an. Wenn man gewisse kleine Anwachsraten als unschid-
lich zul4B8t, ist das prasktisch verflighare Stabilitdtsfenster noch
gréfer. Es kdnnte daher reizvell sein, den Tokamakstabilit#tsbe~
reich versuchsweise zu verlassen, um experimentell die Frage nach
der Brauchbarkeit der h8heren Stabilitétsbereiche endgliltig zu

beantworten.
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