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Dissipation in a superconducting artificial atom due to a single nonequilibrium quasiparticle
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We study a superconducting artificial atom which is represented by a single Josephson junction or a Josephson

junction chain, capacitively coupled to a coherently driven transmission line, and which contains exactly one

residual quasiparticle (or less than one quasiparticle per island in a chain). We study the dissipation in the atom

induced by the quasiparticle tunneling, taking into account the quasiparticle heating by the drive. We calculate

the transmission coefficient in the transmission line for drive frequencies near resonance and show that, when the

artificial atom spectrum is nearly harmonic, the intrinsic quality factor of the resonance increases with the drive

power. This counterintuitive behavior is due to the energy dependence of the quasiparticle density of states.
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I. INTRODUCTION

Quantum engineering in superconducting nanocircuits is

a rapidly developing field, thanks to progress in sample

fabrication techniques which has been occurring in the past

decade [1]. Due to superconductivity, electromagnetic signals

propagate in such circuits with extremely low losses, and

the circuit properties can be tuned by applying an external

magnetic field. Using superconducting circuit technology,

a single microwave photon can be strongly coupled to an

artificial atom represented by a superconducting qubit [2].

An artificial atom (AA) can be probed spectroscopically by

coupling it to an open superconducting transmission line (TL)

and by measuring resonances in reflection or transmission of

TL photons at frequencies corresponding to the transitions

between the AA energy levels [3,4].

The AA transitions are broadened by a variety of mecha-

nisms. By analyzing the resonance shape, one can separate the

extrinsic broadening, which arises because of the coupling be-

tween the AA and the TL and is essentially due to spontaneous

emission of photons into the TL, and intrinsic broadening,

which is due to dissipation in the AA itself [5,6]. Here, we

focus on a specific intrinsic dissipation mechanism, which is

due to nonequilibrium quasiparticles. At low temperatures, the

quasiparticle density is expected to be very low, determined by

thermal activation across the superconducting gap. However,

many experiments indicate that residual quasiparticles often

remain trapped in the sample [7–12], and their recombination

can be extremely slow [13,14].

Many experiments involving residual quasiparticles

are successfully described by the theory developed in

Refs. [15,16]. This theory is based on the assumption of a

fixed average quasiparticle distribution which perturbs the

superconducting degrees of freedom; the resulting net effect

is equivalent to that of a frequency-dependent resistance

included in the circuit. Technically, this corresponds to a

description in terms of the AA reduced density matrix, while

the quasiparticles are treated as a bath whose effect can be

accounted for by standard dissipative terms in the master

equation. The fixed distribution assumption is valid in the weak

signal regime, when the back-action of the superconducting

condensate excitations on the quasiparticles can be neglected.

This assumption must be reconsidered in situations when the

probing signal is strong enough to modify the quasiparticle

distribution and the latter can affect the quantities which are

measured.

Here, we study a simple model problem of an AA

which is capacitively coupled to a coherently driven TL, as

schematically shown in Fig. 1, and which contains exactly

one quasiparticle. Indeed, if the AA initially contains one

quasiparticle, it cannot escape into the external circuit because

of the capacitors, and has no partner to recombine with. At

the same time, we assume the drive to be not too strong, so

the system remains at low energy and new quasiparticles are

not produced. The AA is represented by a Josephson junction

(or a chain of junctions) whose Josephson energy strongly

exceeds the Coulomb charging energy. Technically, we derive

the master equation for the AA coupled to a TL analogously

to Refs. [17,18], but the quasiparticle degrees of freedom are

included in the reduced density matrix following the approach

of Refs. [19,20] and its application to a Cooper-pair box in

Ref. [21]. Here, we focus on the simplest case, assuming

the energy exchange with the AA excitations to be the only

mechanism of the quasiparticle energy relaxation and fully

neglecting acoustic phonon emission by the quasiparticle.

When both mechanisms are included, the competition between

them results in a variety of different regimes, which will be

studied in a forthcoming publication [22].

Under these assumptions, we calculate here the transmis-

sion coefficient in the TL and the intrinsic quality factor

of the AA transition, which depend on the coherent drive

strength. Indeed, the stronger the drive, the higher is the typical

quasiparticle energy, the lower is the quasiparticle density of

states, the lower is the probability of quasiparticle tunneling.

Thus, the intrinsic quality factor increases with the drive

strength (as long as new quasiparticles are not produced).

We also extend our calculation to the case when the AA is

represented by a Josephson junction chain containing a few

quasiparticles (less than one per junction) whose total number

is fixed, and calculate the corresponding intrinsic quality factor

of the electromagnetic modes of the chain, obtaining the same
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FIG. 1. A schematic representation of an artificial atom capac-

itively coupled to a superconducting transmission line. A coherent

signal is sent into the transmission line, whose reflection and

transmission are measured.

power dependence. Such power dependence has been observed

in high-quality superconducting resonators [23–25] and was

attributed to a saturation of two-level systems. The mechanism

discussed here may provide an alternative explanation for these

observations.

The paper is organized as follows: In the next section, we

give a qualitative discussion of the main physical ingredients

of our study and of the results. In Sec. III, we introduce the

theoretical model for the system “TL + AA + quasiparticle,”

include the coherent drive, and give the formal expression for

the transmission coefficient in terms of an operator average,

when the AA is represented by a single Josephson junction. In

Sec. IV, we derive the master equation for the junction and the

quasiparticle, which is solved in Sec. V. This study is extended

to the case of an AA represented by a Josephson junction chain

in Sec. VI. In Sec. VII, we give a simple estimate of the phonon

emission rate to check when it can be neglected. Finally, the

conclusions are given in Sec. VIII.

II. QUALITATIVE PICTURE

We study the setup schematically shown in Fig. 1. The

AA is represented by a Josephson junction whose Josephson

energy EJ strongly exceeds the Coulomb charging energy

EC ≡ e2/(2CJ ), where CJ is the junction capacitance. The

energy of the transition between the AA energy levels is h̄ωp =√
8EJ EC , where ωp is the junction plasma frequency. If the

junction happens to host a quasiparticle (for whatever reason),

the quasiparticle cannot be evacuated into the external circuit

because of the capacitors, and cannot recombine since the

electron number parity is conserved. The AA energy levels

are broadened due to (i) spontaneous emission of TL photons

with rate ŴTL, and (ii) energy exchange between AA and the

quasiparticle with two rates Ŵ+
qp,Ŵ

−
qp for the AA going to the

upper/lower energy level, respectively. ŴTL and Ŵ±
qp determine

the external and internal quality factors of the AA resonance,

respectively, and we assume ŴTL,Ŵ±
qp ≪ ωp.

The microscopic mechanism of energy exchange between

the AA, built of the superconducting condensate degrees of

freedom in the Josephson junction, and the quasiparticle, is the

quasiparticle tunneling between the two sides of the junction.

The rates of quasiparticle tunneling accompanied by excitation

or deexcitation of the AA can be estimated from the Fermi

golden rule as

Ŵ±
qp ∼

δ

h̄

EJ

�

h̄ωp

EJ

√

�

max{Teff,h̄ωp}
. (1)

Here, δ is the normal-state mean level spacing of each

island forming the junction (for simplicity, the two islands

are assumed to be identical), while Teff is the effective

quasiparticle temperature or, equivalently, the typical energy of

the quasiparticle counted from the quasiparticle band bottom at

�; it depends on the drive strength, as we will show in Sec. V.

The factor EJ /� is of the order of the dimensionless junction

conductance in the normal state, according to Ambegaokar-

Baratoff relation [26]; it appears because EJ is proportional to

the square of the single-electron tunneling matrix element.

The factor h̄ωp/EJ originates from the first off-diagonal

matrix element of the tunneling Hamiltonian in the AA

subspace. The last factor is the quasiparticle density of states,

assuming Teff,h̄ωp ≪ � (otherwise, more quasiparticles can

be produced, which is not taken into account in the present

theory).

Strictly speaking, the use of Fermi golden rule requires the

energy spectrum of the final states to be continuous, while

here we are dealing with discrete spectrum. Indeed, the level

spacing δ is finite because the islands have a finite volume,

and one cannot send δ → 0 because then the tunneling rate

vanishes (this vanishing is due to the simple fact that δ → 0

implies the volume going to infinity, so the quasiparticle just

never arrives at the junction). The AA energy levels are also

discrete. The use of the golden rule is consistent if the energy

levels are sufficiently dense, so that the rate exceeds the energy

spacing of the final states. This spacing is of the order of

δ
√

max{Teff,h̄ωp}/�, and it is easy to see from Eq. (1) that the

rates Ŵ±
qp are always smaller. Thus, to allow the quasiparticle

tunneling, the AA levels have to be sufficiently broadened by

the photon emission h̄ŴTL � δ
√

max{Teff,h̄ωp}/� [27,28].

Thus, we are forced to consider the situation when the

internal quality factor is much higher than the external one

because of the condition Ŵ±
qp ≪ ŴTL. Then, the average degree

of excitation of the AA is determined by the balance between

the coherent drive and the spontaneous photon emission into

the TL. In turn, the quasiparticle effective temperature Teff is

determined by the AA degree of excitation and is found from

the solution of the kinetic equation. Then, Teff determines Ŵ±
qp

and the internal quality factor.

Since we assumed EC ≪ EJ , the lower part of the AA en-

ergy spectrum corresponds to a weakly anharmonic oscillator,

in the sense that the anharmonic correction to the energy levels,

∼EC , is smaller than the oscillator transition energy h̄ωp.

However, two different situations may arise depending on the

relation between EC and ŴTL. If EC ≪ ŴTL, tuning the drive

frequency in resonance with the first transition automatically

puts it in resonance with subsequent transitions, so the AA can

be treated as a harmonic oscillator (as long as its degree of

excitation is not too high). In the opposite case, EC ≫ ŴTL,

the second transition is automatically out of resonance; in this

case, AA is effectively a two-level system, also known as the

transmon qubit [29]. Below we present the theory for both
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cases; however, for realistic values of the system parameters,

the AA represented by a single Josephson junction corresponds

to the qubit limit. It turns out that in the qubit limit, the

effect of quasiparticle heating is always masked by the power

broadening of the AA transition.

The harmonic limit turns out to be relevant for a slightly

more complex realization of the AA, a chain of Josephson junc-

tions. Sufficiently long chains have isolated resonances with

high quality factors [6], while the nonlinear correction to the

transition frequency scales as the inverse of the number of junc-

tions in the chain [30]. The number of quasiparticles should be

proportional to number of junctions, but when there is much

less than one quasiparticle per junction, the quasiparticles can

be treated independently, so the theory developed for one junc-

tion is straightforwardly extended on the case of a long chain.

Our main result is that in both cases the intrinsic quality

factor due to the quasiparticle tunneling increases with the

drive strength (as long as new quasiparticles are not produced).

The reason for such behavior is very simple and general: the

stronger the drive, the higher is the typical quasiparticle energy,

the lower is the quasiparticle density of states at such energies,

so the lower is the probability of quasiparticle tunneling.

Our calculations are done assuming that the energy ex-

change with the AA excitations is the main mechanism of the

quasiparticle energy relaxation, and fully neglecting acoustic

phonon emission by the quasiparticle. The latter is known

to quickly slow down for low quasiparticle energies [31]; a

simple estimate for typical parameters shows that the phonon

emission rate is indeed smaller than the quasiparticle tunneling

rate; however, the inequality is not very strong. Thus, a study

including both mechanisms is needed and will be reported

elsewhere [22].

III. MODEL

A. System Hamiltonian

We consider an artificial atom represented by a single

Josephson junction (JJ), made of two superconducting islands,

and coupled to a transmission line (TL) by a capacitance Cc1

and grounded via a capacitance Cc2, as shown in Fig. 2. The TL

is characterized by its inductance L0 and capacitance C0 per

unit length, and their ratio determines the TL impedance Z0 =√
L0/C0. We model the TL by a discrete array of inductors and

capacitors with the discretization length x1, the limit x1 → 0

to be taken in the end. The JJ is characterized by two energy

scales: the Josephson energy EJ and the charging energy

EC , related to the Josephson inductance LJ and the junction

capacitance CJ as EJ = (h̄/2e)2(1/LJ ) and EC = e2/(2CJ ).

In the following, we assume EJ ≫ EC , then the quantum

fluctuations of the superconducting phase are small and the

JJ can be viewed as a weakly anharmonic oscillator whose

linear frequency is the JJ plasma frequency ωp = 1/
√

LJ CJ .

We assume that the JJ hosts a single quasiparticle which can

tunnel between the two islands, but cannot leave the junction

because of the capacitors. This system can be described by the

following Hamiltonian:

Ĥ = ĤJ + ĤTL + ĤJTL + Ĥqp + ĤJqp. (2)

The first three terms describe the JJ, the photons in the TL, and

their coupling, respectively. They are given by the sum of the

electrostatic energy of each capacitor and the energy of each

inductor:

ĤJ =
Q̂2

J

2CJ

+ EJ

(

1 − cos
2e�̂J

h̄

)

, (3a)

ĤTL =
Q̂2

0

2Cc

+
Q̂2

0

2CJ

+
∑

n�=0

Q̂2
n

2C0x1

+
∑

n

(�̂n − �̂n+1)2

2L0x1

,

(3b)

ĤJTL =
Q̂J Q̂0

CJ

. (3c)

Here, Q̂n�=0 is the operator of charge on the upper plate of the

nth capacitor C0x1 and �̂n is the corresponding canonically

conjugate flux, [Q̂n,�̂m] = −ih̄δnm, whose time derivative

is the voltage on the node n. At n = 0, �̂0 is related to

the voltage of the node n = 0, while �̂J is related to the

voltage drop across the junction. The conjugate charges Q̂0

and Q̂J are given by the appropriate linear combinations of

the charges on the three capacitors Cc1, Cc2, and CJ . The

electrostatic energy of the n = 0 node is expressed in terms of

Cc = Cc1Cc2/(Cc1 + Cc2), the series capacitance of capacitors

Cc1 and Cc2. The electrostatic energy of the junction is given

by (Q̂0 + Q̂J )2/(2CJ ), and it is split between the three terms

ĤJ + ĤTL + ĤJTL. The superconducting phase difference on

the junction is given by φ̂ = (2e/h̄)�̂J (we assume e > 0, so

the electron charge is −e).

The last two terms in Eq. (2) describe the quasiparticle and

its interaction with the superconducting phase difference on

the JJ [15,16]:

Ĥqp =
∑

j=u,l

∑

p

ǫp|j,p〉〈j,p|, (3d)

ĤJqp =
∑

p,p′

Tpp′(upup′ − vpvp′e2ie�̂J /h̄)|u,p〉〈l,p′| + H. c.

(3e)

Here, |j,p〉 is the state of the quasiparticle on the upper or

lower island of the junction, j = u,l, with momentum p. The

quasiparticle energies ǫp =
√

ξ 2
p + �2 − �, measured from

the gap �, are assumed to be the same for both islands.

The quasiparticle energy in the normal state ξp determines

the normal-state density of states per spin projection, which

can also be represented as the inverse of the mean level spacing

δ on each island:

1

δ
=

∑

p

δ(ξp − ξ ). (4)

δ is assumed to be energy independent. Being inversely

proportional to the island volume, δ is small but finite. The

quasiparticle density of states is given by

ν(ǫ) ≡
∑

p

δ(ǫp − ǫ) =
2

δ

θ (ǫ)(ǫ + �)
√

(ǫ + �)2 − �2
, (5)

where θ (ǫ) is the Heaviside step function. The quasiparticle

Bogolyubov amplitudes are given by

v2
p = 1 − u2

p =
1

2

(

1 −
ξp

ǫp + �

)

. (6)
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FIG. 2. A schematic circuit representation of a Josephson junction coupled to a transmission line, modeled as an infinite discrete array of

inductors and capacitors.

The tunneling matrix elements Tpp′ are assumed to be real,

symmetric, and energy independent, in which case they are

related to the Josephson energy by the Ambegaokar-Baratoff

relation [26]

∑

p,p′

T 2
pp′δ(ξp′ − ǫ′) δ(ξp − ǫ) =

EJ

π2�
. (7)

Below we assume that the quasiparticle energy always remains

small, ǫp ≪ �, so we approximate ǫp ≈ ξ 2
p/(2�), ν(ǫ) ≈

(1/δ)
√

2�/ǫ, and we expand up,vp ≈ 1/
√

2 ± (1/2)
√

ǫp/�.

Also, in the regime of small phase oscillations, we expand

e2ie�̂J /h̄ ≈ 1 + 2ie�̂J /h̄. Then, the matrix element of the

tunneling Hamiltonian (3e) becomes

upup′ − vpvp′e2ie�̂J /h̄ ≈
√

ǫp + √
ǫp′

√
2�

−
ie�̂J

h̄
.

The first term of this expression corresponds to elastic

quasiparticle tunneling without changing the JJ state; when

inserted into the Fermi golden rule, it produces the estimate

for the tunneling rate given in Ref. [28]. The second term

describes quasiparticle tunneling which induces a transition

between the JJ energy levels up or down by one level, and is

the crucial ingredient for the master equation, derived below.

B. Coherent drive and transmission coefficient

In the following, we assume that the JJ is probed by sending

a coherent wave in the transmission line and measuring its

amplitude transmission coefficient S21. Our calculation will

focus on the dynamics of the JJ degrees of freedom, Q̂J and

�̂J , so we would like to express the observable S21 in terms

of the quantum average 〈Q̂J 〉. To do this, let us write the

Heisenberg equations of motion for the TL operators:

dQ̂n

dt
=

�̂n+1 + �̂n−1 − 2�̂n

L0x1

, (8a)

d�̂n

dt
=

Q̂n

C0x1

(n �= 0), (8b)

d�̂0

dt
=

Q̂0

Cc

+
Q̂0

CJ

+
Q̂J

CJ

. (8c)

These equations are linear, so their solution can be formally

written as

Q̂n(t) = Q̂free
n (t) +

∫ t

−∞
Gn(t − t ′) Q̂J (t ′) dt ′, (9)

where Q̂free
n (t) is a solution for the free TL (i.e., taking

into account the Hamiltonian ĤTL only), while the last term

represents the effect of ĤJTL with Q̂J (t) treated as a source.

Gn(t − t ′) is the retarded Green’s function, given by

Gn(t − t ′) =
∫

dω

2π
e−iω(t−t ′)Gn(ω), (10)

Gn(ω) =
[1 − iδn0 cot(kωx1/2)]C0x1Cce

ikω|n|x1

CcCJ − C0x1(CJ + Cc)[1 − i cot(kωx1/2)]
, (11)

where kω is the wave vector, related to ω by the TL dispersion

relation

ω2x2
1

v2
= 4 sin2 kωx1

2
, v2 ≡

1

L0C0

. (12)

In the continuum limit x1 → 0, nx1 = x, Gn(ω) = x1G(x,ω),

the expressions simplify as kω = ω/v and

G(x,ω) =
−iωτc(C0/CJ )

1 + Cc/CJ − iωτc

[

1 −
2ivδ(x)

ω

]

eiω|x|/v, (13)

where τc ≡ CcZ0/2 is the classical RC time of the Cc capacitor

coupled to the TL.

The free part Q̂free
n (t) is assumed to be the sum of the

vacuum part with zero quantum average and the classical part.

The latter contains the incident coherent wave with frequency

ωd , momentum kd determined by the dispersion relation (12),

and voltage amplitude Vd , as well as the scattered wave:

〈Q̂free
n (t)〉

C0x1

= Vde
−iωd t (eikdnx1 + reikd |n|x1 )(1 + ζ δn0)

+ c. c., (14)

r ≡
iζ tan(kdx1/2)

1 − iζ tan(kdx1/2)
, ζ ≡

CcCJ

(Cc + CJ )C0x1

− 1. (15)

The scattered wave appears in Q̂free
n (t) because ĤTL in Eq. (3b)

is not translationally invariant. Indeed, the n = 0 site differs

from all other sites by the coefficient of Q̂2
0. Thus, left- and

right-traveling waves are not normal modes even for the “free”

TL. Taking the quantum average of Eq. (9) and the ratio of
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the transmitted wave amplitude to the incident one [note that

the last term in Eq. (9) does not contain the incident wave],

we can relate the transmission coefficient S21 to the average

〈Q̂J (t)〉 ≡ Q+e−iωd t + Q∗
+eiωd t as

S21(ωd ) =
1 + Cc/CJ − iωdτcQ+/(CJ Vd )

1 + Cc/CJ − iωdτc

, (16)

where the continuum limit x1 → 0 has been taken.

In the next section, we will study the master equation for

the JJ and the quasiparticle, treating the TL as a bath. It is

much simpler to write the master equation when the bath

is in the vacuum state rather than in a coherent state. Thus,

we will replace the above system with the driven TL by an

equivalent one, where the TL is in the vacuum state, but the

oscillator is driven directly. To see this equivalence, we write

the Heisenberg equations of motion for Q̂J and �̂J :

dQ̂J

dt
= −

h̄

2eLJ

sin
2e�̂J

h̄
+

i

h̄
[ĤJqp,Q̂J ], (17a)

d�̂J

dt
=

Q̂J

CJ

+
Q̂0

CJ

. (17b)

The JJ is driven by the incident coherent wave via the last term

Q̂0/CJ . Let us now recall that Q̂0 can be represented in the

form (9) where the first term Q̂free
n contains the vacuum part

and the coherent part including the incident wave, while the

second term in Q̂0 does not contain the incident field. Thus, the

Heisenberg equations for Q̂J , �̂J will have exactly the same

form if we assume Q̂free
n to have only vacuum contribution,

while Q̂J is driven by an external voltage VJ (t) = 〈Q̂free
0 〉/CJ .

In other words, the JJ quantum dynamics is the same if no

incident field is sent in the TL, but an additional driving term

is introduced in the JJ Hamiltonian:

Ĥd =
Cc

CJ

(

Vde
−iωd t

1 + Cc/CJ − iωdτc

+ c. c.

)

Q̂J . (18)

The perturbative master equation derived in the next section

assumes the weak-coupling limit, that is, Cc ≪ CJ and

ωpCcZ0 ≪ 1. Then, the denominator in the brackets can be

set to unity.

IV. MASTER EQUATION

It is convenient to rewrite the bosonic part of the Hamil-

tonian in terms of the creation and annihilation operators.

For the JJ operators we have the standard harmonic oscillator

expressions

�̂J =
√

h̄ZJ

2
(â + â†), Q̂J =

√

h̄

2ZJ

â − â†

i
, (19)

where the JJ impedance ZJ =
√

LJ /CJ ; then, the harmonic

part of the JJ Hamiltonian becomes h̄ωp(â†â + 1
2
), where

the plasma frequency ωp = 1/
√

LJ CJ . For the TL in the

continuum limit, nx1 → x, x1 → 0, we introduce the fields

�̂n → �̂(x) and Q̂n → x1q̂(x), which are expressed in terms

of normal modes of the Hamiltonian ĤTL [Eq. (3b)]. As

discussed in Sec. III B, these normal modes are not given by

left- and right-traveling waves because of scattering at n = 0.

Taking advantage of the symmetry n → −n, we separate the

normal modes into even (e) and odd (o), so the flux and charge

density fields are represented as

�̂(x) =
∫ ∞

0

dω

√

h̄Z0

2πω

[

(b̂e,ω + b̂†e,ω) cos

(

ω|x|
v

+ θω

)

+ (b̂o,ω + b̂†o,ω) sin
ωx

v

]

, (20a)

q̂(x) =
[

C0 +
CcCJ

Cc + CJ

δ(x)

] ∫ ∞

0

dω

√

h̄ωZ0

2π

×

[

b̂e,ω − b̂
†
e,ω

i
cos

(

ω|x|
v

+ θω

)

+
b̂o,ω − b̂

†
o,ω

i
sin

ωx

v

]

. (20b)

Here, θω = arctan[ωτc/(1 + Cc/CJ )] is the scattering phase

shift, and the commutation relations for the bosonic operators

are

[b̂jω,b̂
†
j ′ω′ ] = δjj ′δ(ω − ω′), j,j ′ = e,o. (21)

Note the δ(x) contribution to q̂(x); it corresponds to a finite

value of Q̂0 =
∫ 0+

0− q̂(x) dx. The resulting Hamiltonian takes

the form Ĥ0 + Ĥ1, where

Ĥ0 =
∫ ∞

0

dω h̄ω(b̂e,ωb̂†e,ω + b̂o,ωb̂†o,ω)

+ ĤJ − ih̄(�e−iωd t + �∗eiωd t )(â − â†)

+
∑

p

ξ 2
p

2�
(|l,p〉〈l,p| + |u,p〉〈u,p|), (22a)

Ĥ1 = −
∫ ∞

0

dω h̄κ(ω)(b̂e,ω − b̂†e,ω)(â − â†)

+
∑

p,p′

iT̃pp′(|l,p〉〈u,p′| − |u,p〉〈l,p′|)(â + â†), (22b)

where Ĥ0 describes the TL photons, the JJ excitations (plasma

oscillations) driven by an external force [related to the incident

wave amplitude via Eq. (18)], and the quasiparticle, while Ĥ1

describes the coupling between the TL and the JJ, as well as

the JJ coupling to the quasiparticle. The coupling constants

for the JJ-TL coupling, the external drive strength, and the

JJ-quasiparticle coupling amplitude are given by

κ(ω) =

√

ωZ0

4πZJ

Cc
√

(CJ + Cc)2 + (ωCcCJ Z0/2)2
, (23a)

� =
Cc

CJ + Cc − iωdCcCJ Z0/2

Vd√
2h̄ZJ

, (23b)

T̃pp′ =

√

h̄ωp

8EJ

Tpp′ . (23c)

The master equation is obtained assuming the following

ansatz for the density matrix of the full system (the TL, the JJ,
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and the quasiparticle) to hold at all times [19–21]:

ρ̂full(t) =
∑

p

ρ̂p(t) ⊗
|l,p〉〈l,p| + |u,p〉〈u,p|

2
⊗ ρ̂TL. (24)

Here, ρ̂TL is the density matrix of the TL which is treated as an

infinite bath, so its state cannot be changed by interaction with

a finite number of degrees of freedom. We assume ρ̂TL to be

that of the vacuum state (as discussed in Sec. III B, the effect

of the incident wave is incorporated into the driving term in

the Hamiltonian). The quasiparticle is assumed to be located

on any of the two islands with equal probability [28], thus

the density matrix of the subsystem “JJ + quasiparticle” is

proportional to the unit matrix in the island index j = u,l.

We also assume the density matrix to be diagonal in the

quasiparticle momentum, thereby neglecting any coherence

between different quasiparticle states (this assumption is

discussed in more detail later in this section). Thus, ρ̂p is

the nontrivial part of the system density matrix which remains

after having factored out the vacuum ρ̂TL and the unit matrix

in the island index.

The subsequent steps are quite standard. Passing to the

interaction representation,

ρ̂full(t) = e−iĤ0t/h̄ ˆ̃ρfull(t) eiĤ0t/h̄,

ˆ̃H1(t) = e−iĤ0t/h̄ Ĥ1 eiĤ0t/h̄,

and treating Ĥ1 as a perturbation, we obtain the equation for
ˆ̃ρp(t) as

d ˆ̃ρp(t)

dt
= −

1

h̄2

∫ t

−∞
dt ′

×
∑

j=u,l

〈j,p| TrTL{[ ˆ̃H1(t),[ ˆ̃H1(t ′), ˆ̃ρfull(t ′)]]}|j,p〉,

(25)

where the trace is taken over the TL variables. Using the

Markovian approximation for the time integral, neglecting fast

oscillating terms, and going back to the original Schrödinger

representation, we arrive at the following master equation for

ρ̂p(t):

dρ̂p

dt
= −

i

h̄
[ĤJ,ρ̂p] + [�e−iωd t â† − �∗eiωd t â,ρ̂p]

+ ŴTL âρ̂pâ
† −

ŴTL

2
{â†â,ρ̂p}

+
ωpδ2

4π�

∑

p′

δ(ǫp − h̄ωp − ǫp′) âρ̂p′ â†

+
ωpδ2

4π�

∑

p′

δ(ǫp + h̄ωp − ǫp′) â†ρ̂p′ â

−
ωpδ2

8π�

∑

p′

δ(ǫp + h̄ωp − ǫp′) {â†â,ρ̂p}

−
ωpδ2

8π�

∑

p′

δ(ǫp − h̄ωp − ǫp′) {ââ†,ρ̂p}

− i
ωpδ2

8π2�

∑

p′

P
1

ǫp + h̄ωp − ǫp′
[â†â,ρ̂p]

− i
ωpδ2

8π2�

∑

p′

P
1

ǫp − h̄ωp − ǫp′
[ââ†,ρ̂p], (26)

whereP denotes the principal value and ŴTL is the JJ excitation

decay rate due to emission of TL photons in the weak-coupling

limit:

ŴTL =
ωp(Z0/2ZJ )C2

c

(CJ + Cc)2 + (Z0/2ZJ )2C2
c

≈
Cc

CJ

ω2
pτc. (27)

Since ρ̂p can depend on p only via energy ǫp, it is convenient

to pass to

ρ̂(ǫ,t) =
1

ν(ǫ)

∑

p

ρ̂p(t) δ

(

ξ 2
p

2�
− ǫ

)

, (28)

with the normalization
∫

Tr ρ̂(ǫ) ν(ǫ) dǫ = 1, where ν(ǫ) ≈
(1/δ)

√
2�/ǫ is the quasiparticle density of states, defined in

Eq. (5) above. Then, the master equation takes the form

∂ρ̂(ǫ)

∂t
= −

i

h̄
[ĤJ,ρ̂(ǫ)] + [�e−iωd t â† − �∗eiωd t â,ρ̂(ǫ)]

+ ŴTL â ρ̂(ǫ) â† −
ŴTL

2
{â†â,ρ̂(ǫ)}

+
ωpδ

4π�

√

2�

ǫ − h̄ωp

â ρ̂(ǫ − h̄ωp) â†

+
ωpδ

4π�

√

2�

ǫ + h̄ωp

â†ρ̂(ǫ + h̄ωp) â

−
ωpδ

8π�

√

2�

ǫ + h̄ωp

{â†â,ρ̂(ǫ)}

−
ωpδ

8π�

√

2�

ǫ − h̄ωp

{ââ†,ρ̂(ǫ)}

+ i
ωpδ

8π�

√

2�

h̄ωp − ǫ
[ââ†,ρ̂(ǫ)], (29)

where the square roots should be set to zero if the argument is

negative. In the next section, we will use Eq. (29) to study the

JJ dynamics in the presence of the quasiparticle.

Let us now discuss the assumptions made in the derivation

of Eq. (29). Using the Markovian approximation for the time

integral in Eq. (25) is equivalent to calculating the transition

rates in Eq. (29) from the Fermi golden rule. In both cases,

it is important that the energy spectrum of the final states for

the transition is continuous, or at least discrete but sufficiently

dense, so that the level spacing is smaller than the obtained

transition rate. For the photon emission into the TL, this is

perfectly valid because the TL photon spectrum is continuous.

However, the quasiparticle levels are discrete, and the relevant

energy level spacing is ∼δ
√

max{ǫ,h̄ωp}/�, which should

be compared to the typical rate ∼δ(ωp/�)
√

�/ max{ǫ,h̄ωp}
from Eq. (29). It is easy to see that the rate is always smaller.

Thus, for the above derivation to be valid, we need the
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TL-induced broadening ŴTL to be sufficiently strong compared

to the level spacing and thus to the quasiparticle tunneling

rate [27,28]. In the opposite regime of weak TL-induced

broadening, due to energy conservation the quasiparticle

would be unable to absorb or emit a quantum h̄ωp, unless

assisted by some extrinsic process (such as phonon emission).

In other words, replacement of the p sum by the integral

in the four terms with δ functions in Eq. (26) would be

incorrect. These terms would simply vanish, as the arguments

of the delta functions would never be zero, and keeping the

corresponding terms in Eq. (29) would lead to unphysical

results; electron-phonon coupling, for example, should be

explicitly introduced to allow the absorption/emission process.

The very same broadening mechanism that justifies

the Markovian approximation also enables us to neglect the

quasiparticle coherence (the off-diagonal elements of the

density matrix in the quasiparticle subspace with different

momenta and/or between different islands). Indeed, when the

quasiparticle performs a transition from a level with the energy

ǫ on one island into a bunch of levels with energies spread

over an interval of width ∼h̄ŴTL around ǫ ± h̄ωp on the other

island, the off-diagonal terms beating at relative frequencies

∼ŴTL have already dephased on the quasiparticle tunneling

time scale. Thus, the quasiparticle is treated as a “minibath,”

in the sense that the coherence is neglected, but change of the

quasiparticle state by exciting or deexciting the JJ is accounted

for [20].

So far, we did not assume the separability of the density

matrix ρ̂(ǫ) into a product of the JJ and quasiparticle matrices.

However, the smallness of the quasiparticle tunneling rate with

respect to the photon emission rate enables us to do so. Indeed,

during the time the quasiparticle stays on one level, the JJ

exchanges many photons with the TL and fully samples the

allowed part of its Hilbert space. Thus, in the following we

will use the separable form ρ̂(ǫ) = ρ̂J f (ǫ), where ρ̂J is the

JJ density matrix which does not depend on the quasiparticle

energy, and f (ǫ) is the quasiparticle distribution function. Both

are normalized:

Tr ρ̂J = 1,

∫ ∞

0

f (ǫ) ν(ǫ) dǫ = 1. (30)

To conclude this section, we estimate the change in the

superconducting gap due to the presence of one quasiparticle.

Let �0 be the gap in the absence of quasiparticles, and � the

gap with one quasiparticle. Then, the self-consistency equation

can be written as

∫ �

−�

dξ/δ
√

ξ 2 + �2
0

=
∫ �

−�

dξ/δ
√

ξ 2 + �2
[1−2f(

√

ξ 2 + �2 − �)],

(31)

where � is the high-energy cutoff (of the order of Debye

frequency). Performing the integration under the assumption

ǫ =
√

ξ 2 + �2 − � ≪ � and using the normalization (30),

we obtain � = �0 − δ. Note that since the Josephson energy

is a symmetric function of the gaps in the two electrodes,

the tunneling of a single quasiparticle does not change EJ and

hence the AA frequency. This is in contrast with the addition of

quasiparticles, which suppresses EJ and hence the frequency

[15,16]. Therefore, in the present case only the last term in

Eq. (29) can alter the frequency, as we will discuss in the next

section.

V. SOLUTION OF THE MASTER EQUATION

A. Role of anharmonicity in the junction

Our starting assumption EJ ≫ EC , equivalent to EC ≪
h̄ωp =

√
8EJ EC , implies that the anharmonicity in the junc-

tion is weak. However, this does not automatically mean that

the junction can be treated as a harmonic oscillator. Let us

expand the cosine term in Eq. (3a) to the fourth order:

ĤJ = h̄ωp

(

â†â +
1

2

)

−
EC

12
(â† + â)4. (32)

Since EC ≡ e2/(2CJ ) ≪ h̄ωp, the last term produces an

anharmonic correction to the JJ level energies, En = h̄ωp(n +
1/2) − (EC/2)(n2 + n + 1/2). For not too large n, the anhar-

monic correction to the transition energy En+1 − En is small

compared to h̄ωp. However, we are studying a resonantly

driven junction, so we are interested in drive frequencies ωd

close to the transition frequency:

|En+1 − En − h̄ωd| ∼ h̄ŴTL. (33)

Then, even though EC ≪ h̄ωp, the difference in energies of

the first two transitions (E2 − E1) − (E1 − E0) = −EC can

be large compared to ŴTL, if EC ≫ h̄ŴTL. In this case, the

resonance condition (33) can be satisfied only for one of the

transitions, so the JJ effectively behaves as a two-level system,

also known as the transmon qubit [29]. In the opposite limit,

h̄ŴTL ≫ EC , the JJ can be treated as a harmonic oscillator,

provided that its degree of excitation is not too high. Below

we will consider both these limits separately. The qubit limit

will be treated by simply truncating the JJ Hilbert space to two

levels and by replacing the creation and annihilation operators

â†, â in the master equation (29) by the Pauli raising and

lowering counterparts σ+, σ−.

B. Effective quasiparticle temperature

The kinetic equation for the quasiparticle distribution

function f (ǫ) is obtained by taking the trace over the JJ

variables in Eq. (29):

∂f (ǫ)

∂t
=

ωpδ2

4π�
ν(ǫ − h̄ωp)[n̄f (ǫ − h̄ωp) − (1 ∓ n̄)f (ǫ)]

+
ωpδ2

4π�
ν(ǫ + h̄ωp)[(1 ∓ n̄)f (ǫ + h̄ωp) − n̄f (ǫ)],

(34)

where n̄ ≡ Tr{σ+σ−ρ̂J } or n̄ ≡ Tr{â†âρ̂J } is the average

number of excitations in the JJ in the qubit or harmonic limit,

respectively, and the upper (lower) sign corresponds to the

qubit (harmonic) limit.

We are interested in the stationary situation, so we assume

n̄ to be constant. Then, the stationary solution of the kinetic

equation (34) is [32]

f (ǫ) =
δ

√
2πTJ �

e−ǫ/TJ θ (ǫ), (35)
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where θ (ǫ) is the step function, and we defined

TJ ≡
h̄ωp

ln(1/n̄ ∓ 1)
, (36)

which has the meaning of the JJ effective temperature. We

emphasize that this is just a convenient notation; the JJ is not

in a thermal state [33].

C. Junction state

To find the JJ state, we multiply the master equation (29) by

ν(ǫ) and integrate with respect to ǫ, which gives the equation

for the JJ density matrix ρJ (t):

∂ρ̂J

∂t
= − iω̃p[â†â,ρ̂J ] + [�e−iωd t â† − �∗eiωd t â,ρ̂J ]

+ (ŴTL + Ŵ−
qp)D(â) ρ̂J + Ŵ+

qp D(â†) ρ̂J

+ Ŵ∗
φ D(â†â) ρ̂J ,

D(Ô) ρ̂J ≡Ôρ̂J Ô† −
1

2
Ô†Ôρ̂J −

1

2
ρ̂J Ô†Ô, (37)

written here for the harmonic limit; in the qubit limit one

should just replace â† → σ+, â → σ−, â†â → (σz + 1)/2.

The last term in Eq. (37) represents a pure dephasing contri-

bution with the rate Ŵ∗
φ that we include phenomenologically.

Other dissipation mechanisms in the artificial atom can be

straightforwardly incorporated into the master equation (37);

in the weak-coupling approximation, the corresponding rates

should be simply added to the absorption, emission, and

dephasing terms of the equation. In both qubit and harmonic

limits, the rates Ŵ∓
qp of the JJ excitation/deexcitation by the

quasiparticle are given by

Ŵ−
qp =

ωp

2π

∫ ∞

0

f (ǫ) dǫ
√

ǫ(ǫ + h̄ωp)
,

(38)

Ŵ+
qp =

ωp

2π

∫ ∞

0

f (ǫ + h̄ωp) dǫ
√

ǫ(ǫ + h̄ωp)
.

These expressions are smaller than those in Ref. [34] by a factor

of 4; this is because in that reference equal occupation was

assumed for each spin and at both sides of the junction, while

here we have a single quasiparticle. Similarly, the renormalized

frequency ω̃p includes a shift due to the interaction with the

quasiparticle, but with a smaller prefactor than in Ref. [16] (and

no contribution from Andreev states since the quasiparticle is

assumed to be in the bulk):

ω̃p = ωp ±
ωp

4π

∫ h̄ωp

0

f (ǫ) dǫ
√

ǫ(h̄ωp − ǫ)
, (39)

with the upper (lower) sign for the qubit (harmonic) limit.

Equation (37) has the form of the standard master equation

for a driven harmonic oscillator (or a driven two-level system

in the qubit limit) coupled to a Markovian bath [33]. The

difference from the standard case is that the rates Ŵ∓
qp depend

on f (ǫ), which, in turn, depends on ρ̂J itself. For the stationary

distribution function (35), they are given by

Ŵ∓
qp = Ŵ0 e±χ

√

2χ/π K0(χ ), (40)

where K0(χ ) is the modified Bessel function, and

Ŵ0 ≡
δ

2πh̄

√

h̄ωp

2�
, χ ≡

h̄ωp

2TJ

. (41)

These expressions are different from those obtained in

Ref. [34] under the assumption of equilibriumlike form for

the distribution function: the difference stems from the fact

that here the quasiparticle number is fixed to one. Also, we

remind that here we assumed h̄ωp ≪ �; corrections can be

calculated analogously to Ref. [34]. The following asymptotic

expressions for low and high temperature illustrate the overall

behavior of the rates Ŵ∓
qp from Eq. (40):

Ŵ−
qp ≈ Ŵ0, Ŵ+

qp ≈ Ŵ0e
−h̄ωp/TJ , TJ ≪ h̄ωp (42a)

Ŵ∓
qp ≈ Ŵ0

√

h̄ωp

πTJ

(

1 ±
h̄ωp

2TJ

)

ln
4TJ

eγ h̄ωp

, TJ ≫ h̄ωp.

(42b)

Here, γ = 0.577 . . . is the Euler-Mascheroni constant. The

renormalized frequency can also be calculated explicitly by

substituting Eq. (35) into Eq. (39). Denoting with ω̃p0 the

renormalized frequency in the limit TJ → 0, we have

ω̃p − ω̃p0 = ±Ŵ0

[

e−χ

√

πχ

2
I0(χ ) −

1

2

]

(43)

with ω̃p0 = ωp ± Ŵ0/2. In the limit TJ → ∞, we find

ω̃p → ωp.

The stationary solution of Eq. (37), found in the standard

way (namely, by rewriting it as Bloch equations in the qubit

limit or by acting on it by â and tracing in the harmonic limit),

determines the stationary oscillating coherent polarization in

the two limits:

〈σ−〉 =
Ŵn

Ŵtot

[Ŵφ/2 − i(ω̃p − ωd )] �e−iωd t

(ω̃p − ωd )2 + Ŵ2
φ/4 + 2|�|2Ŵφ/Ŵtot

, (44a)

〈â〉 =
�e−iωd t

i(ω̃p − ωd ) + (Ŵn + Ŵ∗
φ)/2

, (44b)

Ŵn ≡ ŴTL + Ŵ−
qp − Ŵ+

qp,

Ŵtot ≡ ŴTL + Ŵ−
qp + Ŵ+

qp, Ŵφ ≡ Ŵtot + Ŵ∗
φ .

Equation (44a) coincides with the textbook solution of the

Bloch equations [35] for Ŵ+
qp = 0. Here, Ŵn has the meaning

of relaxation rate for the excitation number, and Ŵφ/2 is the

total dephasing rate. The average number of excitations n̄ is

found straightforwardly in the two limits. It is more convenient

to give an expression for eh̄ωp/TJ , which has the same form in

both cases,

eh̄ωp/TJ =
Ŵ|�|2 + (ŴTL + Ŵ−

qp)[(ωd − ω̃p)2 + Ŵ2/4]

Ŵ|�|2 + Ŵ+
qp[(ωd − ω̃p)2 + Ŵ2/4]

, (45)

provided that one substitutes Ŵ = Ŵtot in the qubit limit and

Ŵ = Ŵn in the harmonic limit. Since the rates Ŵ∓
qp depend on TJ ,

Eq. (45) is a self-consistency equation for TJ , strictly speaking.

However, if one studies the right-hand side of Eq. (45) as a

function of h̄ωp/TJ , treated as an independent variable, it

turns out that this function varies in an interval between two
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finite values, and this interval is very narrow for Ŵ0 ≪ ŴTL.

In fact, to find TJ as a function of the drive amplitude Vd

or of the incident power Pin = 2|Vd |2/Z0 = 2h̄ωp|�|2/ŴTL,

one can simply neglect Ŵ±
qp and the frequency renormalization

in Eq. (45), whose right-hand side then becomes 1 + [(ωd −
ωp)2 + Ŵ2

TL/4]/|�|2. Then, the input power and the effective

temperature are related by

eh̄ωp/TJ = 1 +
(ωd − ωp)2 + Ŵ2

TL/4

ŴTL/2

h̄ωp

Pin

≡ 1 +
P∗

Pin

. (46)

D. Transmission coefficient and quality factors

Equations (44a) and (44b), together with Eq. (19), de-

termine the average 〈QJ (t)〉, which, when substituted into

Eq. (16), gives the following expressions for the transmission

coefficient in the qubit and the harmonic limits, respectively:

S21(ω) = 1 −
iŴTL

2

Ŵn

Ŵtot

ω − ω̃p − iŴφ/2

(ω − ωp)2 + Ŵ2
φ/4 + 2|�|2Ŵφ/Ŵtot

,

(47a)

S21(ω) = 1 −
iŴTL/2

ω − ω̃p + i(Ŵn + Ŵ∗
φ)/2

, (47b)

where we used Eq. (27), as well as the weak-coupling

assumptions Cc ≪ CJ and ωpCcZ0 ≪ 1. We also consider

driving not too far from resonance, |ωd − ωp| ≪ ωp. For

Ŵ±
qp = 0, Eq. (47a) coincides with Eq. (55) of Ref. [18].

Equation (47b) can be compared to the phenomenological

expression for the transmission coefficient near a resonance

[5,24,36,37]:

S21(ω) = S∞
21

ω − ω0 + iω0/(2Qi)

ω − ω∞ + iω0/(2Qi) + iω0/(2Qe)
. (48)

Here, S∞
21 is the constant high-frequency asymptote, ω∞ and

ω0 are the resonant frequencies with and without coupling to

the TL (in our weak-coupling limit, they both coincide with the

quasiparticle-renormalized plasma frequency ω̃p), and Qe and

Qi are the external and internal quality factors, respectively.

Thus, we adopt the following expressions for the external and

internal quality factors in terms of the quantities, calculated

above:

Qe =
ωp

ŴTL

≈
2ZJ

Z0

C2
J

C2
c

, Qi =
ωp

Ŵ∗
φ + Ŵ−

qp + Ŵ+
qp ± 2Ŵ+

qp

,

(49)

where the upper (lower) sign in the expression for Qi

corresponds to the qubit (harmonic) limit and we neglect small

corrections due to the frequency renormalization.

While Eq. (49) is straightforwardly obtained by comparing

Eqs. (47b) and (48) in the harmonic limit, for the qubit limit

Eq. (47a) can be cast into the form (48) only when the

power broadening term ∝|�|2 in the denominator of Eq. (47a)

is neglected. Otherwise, Ŵ±
qp cannot be extracted from the

transmission measurement since the broadening is dominated

by the 2|�|2Ŵφ/Ŵtot term. Thus, we are interested in low

powers, such that

8|�|2 ≪ ŴtotŴφ ∼ Ŵ2
TL. (50)

TABLE I. Parameters for a Josephson junction coupled to a

transmission line, taken from Ref. [30]. Superconductor material

parameters are taken for aluminum [39,40].

TL impedance Z0 50 �

JJ inductance LJ 4.1 nH

JJ capacitance CJ 4.2 fF

Coupling capacitance Cc 8 fF

Superconducting gap � 200 µeV = 2πh̄ × 50 GHz

Density of states DF 1.5 × 1047 J−1m−3

Island volume 0.02 µm3

Electron-phonon coupling � 2.0 × 108 W m−3 K−5

For near-resonant driving |ωd − ωp| � Ŵtl, this is equivalent

to Pin ≪ P∗. This condition then implies, via Eq. (46), low

quasiparticle effective temperature TJ ≪ ωp. In this case,

we have Ŵ+
qp ≪ Ŵ−

qp, and since Ŵ−
qp ≈ Ŵ0 is independent of

power, we conclude that quasiparticle heating does not lead

to a measurable effect on the transmission in the qubit case:

when the pumping power becomes significant enough to heat

up the quasparticle, the power-dependent broadening of the

resonance is determined by the direct contribution from the

drive rather than the indirect one due to the quasiparticle

tunneling.

In the above considerations, we have neglected the pure

dephasing rate Ŵ∗
φ . Experimentally, it can be made as small

as Ŵ∗
φ ∼ 10 kHz (see Ref. [38] and references therein for a

recent discussion), a value comparable to Ŵ0 (see Table II).

Theoretically, one can estimate the pure dephasing rate Ŵ∗
φ

due to the quasiparticle as done in Ref. [34]; it is shown there

that such dephasing rate is of the order of the elastic tunneling

rate Ŵel
qp [28]. The latter, for realistic parameter values, is in

principle power dependent, but is at most comparable to Ŵ0

(see Tables I and II). Therefore, including Ŵ∗
φ does not change

our conclusions for the qubit regime.

In Fig. 3 we plot Qi, relative to its low-power value Qi0 ≡
ωp/Ŵ0, as a function of the dimensionless input power Pin/P∗,

as obtained from Eqs. (40) and (46), for the harmonic limit and

neglecting the pure dephasing Ŵ∗
φ for simplicity; in the inset,

we display the nonmonotonic dependence of the renormalized

frequency on input power. For numerical estimates, we use

structure parameters from Tables I and II, corresponding to

the experiment of Ref. [30]. For these parameters, the junction

is well in the qubit limit EC ≫ h̄Ŵtl. In fact, the parameters

of Ref. [30] do not match well our assumptions for a single

junction (we assumed h̄ωp ≪ EJ ,�), so our theory is valid

for somewhat larger junctions with larger CJ and EJ , and

TABLE II. Energy scales for a Josephson junction coupled to a

transmission line, derived from the parameters in Table I.

Josephson energy EJ 160 µeV = 2πh̄ × 40 GHz

Charging energy e2/(2CJ ) 20 µeV = 2πh̄ × 4.6 GHz

Plasma frequency h̄ωp 160 µeV = 2πh̄ × 40 GHz

Mean level spacing δ 3.6 neV = 2πh̄ × 0.9 MHz

Photon emission rate h̄Ŵtl 1.7 µeV = 2πh̄ × 0.4 GHz

Quasiparticle rate h̄Ŵ0 0.4 neV = 2πh̄ × 90 kHz

Phonon rate h̄/τph(ǫ = h̄ωp) 0.9 neV = 2πh̄ × 0.2 MHz
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FIG. 3. Plot of the internal quality factors Qi, relative to the low-

power value Qi0 = ωp/Ŵ0, as a function of the dimensionless input

power Pin/P∗ for the harmonic limit, neglecting the pure dephasing

contribution. Inset: normalized frequency shift (ω̃p − ω̃p0)/Ŵ0 vs

dimensionless input power for the harmonic case.

lower plasma frequency, which are quite feasible [6]. We chose

Ref. [30] because a long JJ chain was studied there. In the next

section, we show that the harmonic limit is relevant for an

artificial atom represented by a JJ chain, and our assumptions

are valid for chains with parameters as in Ref. [30].

VI. FEW QUASIPARTICLES

IN A JOSEPHSON JUNCTION CHAIN

The theory developed in the previous sections can be quite

straightforwardly extended to the case when the artificial

atom is represented by a more complex system: instead of

a single Josephson junction coupled to the transmission line,

we consider a chain of N − 1 junctions connecting N islands.

Each junction is characterized by the same parameters EJ and

CJ as before, and, in addition each island is assumed to have

a small capacitance Cg ≪ CJ to the ground. The first island

is coupled to the TL via a capacitance Cc. Such a chain has N

eigenmodes with frequencies [6,41]

ωk = ωp

√

βkCJ

Cg + βkCJ

, βk ≡ 2 − 2 cos
πk

N
, (51)

where k = 0, . . . ,N − 1 and ωp = 1/
√

LJ CJ is the same

plasma frequency as before. For sufficiently long chains,

N � ℓs ≡
√

CJ /Cg , the first few modes are well separated

in frequency from each other and from the rest of the modes.

Any of these first modes can be treated as a harmonic oscillator,

and all the theory developed above for a single junction can

be applied to this mode as well, with some modification of

parameters. Namely, the rate of photon emission into the

transmission line becomes

ŴTL =
2

N

ω2
kτcCc

Cg + βkCJ

. (52)

The anharmonic correction to the energy of mode k with

nk photons can be written as (h̄Kkk/2)n2
k , with the self-Kerr

TABLE III. Parameters and energy scales for the lowest mode

of a 200-junction chain coupled to a transmission line, taken from

Ref. [30].

Island ground capacitance Cg 0.12 fF

Chain length N 201

Lowest mode frequency h̄ω1 15 µeV = 2πh̄ × 3.5 GHz

Self-Kerr coefficient h̄K11 1.2 neV = 2πh̄ × 0.3 MHz

Photon emission rate h̄ŴTL 40 neV = 2πh̄ × 10 MHz

Quasiparticle rate h̄Ŵ0 1 peV = 2πh̄ × 0.26 kHz

Phonon rate h̄/τph(ǫ = h̄ω1) 0.2 peV = 2πh̄ × 50 Hz

coefficient Kkk given by [30]

h̄Kkk =
(h̄ωk)2

2N2EJ

N−1
∑

j=1

sin4 πkj

N
=

3(h̄ωk)2

16NEJ

. (53)

Numerical values of parameters for the lowest mode k = 1

of a chain of N = 201 islands, given in Table III, show that

the mode is in the harmonic limit, due to low frequency and

large N .

The quasiparticle state is now characterized by the island

number j = 1, . . . ,N , as well as momentum p. The quasipar-

ticle can tunnel across any of the N − 1 junctions, with the

Hamiltonian

ĤJqp =
∑

j,p,p′

iT
(j )

pp′ (âk + â
†
k)

× (|j − 1,p〉〈j,p′| − |j,p〉〈j − 1,p′|), (54)

T
(j )

pp′ =

√

h̄ωk

4NEJ

Tpp′ sin
πkj

N
. (55)

We assume that the quasiparticle can reside on any island with

equal probability, and can tunnel to any of the two neighboring

islands. Then, the intrinsic quality factor is determined by

Ŵ0 =
δ

Nπh̄

√

h̄ωk

2�
, (56)

instead of Eq. (41). As seen from Table III, this rate is very low.

However, a long chain should contain an extensive number Nqp

of quasiparticles. As long as Nqp ≪ N , they can be treated

independently, and their effect is additive, so Ŵ0 should be

multiplied by Nqp. Using the parameters from Table III, we

obtain Qi0 ≈ 1.3 × 107/Nqp, which gives Qi0 ≈ 3 × 105 for

Nqp = 50 (one quasiparticle per four junctions). This value

is rather high, so the quasiparticle-related dissipation will be

important only if not masked by other mechanisms. Still, such

high quality factors, varying from 106 at low power to 107 at

high power, have been reported for superconducting resonators

[24], and quality factors larger than 106 have been obtained in

superconducting qubits, both comprising one or two junctions

(transmon [12,38]) or about 100 junctions (fluxonium [42]).

The above calculation assumed that all junctions in the

chain have the same parameters. Strictly speaking, this is

not the case; errors in the fabrication process may introduce

spatial variations in the junction parameters with the relative

magnitude σ , typically, a few percent [43]. The most dramatic

effect of disorder is localization of the normal modes on a
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certain length scale ξ . If N ≫ ξ , the above results are no

longer valid. The localization length has been calculated in

Ref. [44]; for low-frequency modes, ξk = (8/σ 2)(πk/N )−2

is always larger than N . In this case, the disorder produces

small corrections to mode frequencies and wave functions [44],

which can be neglected here.

VII. QUASIPARTICLE RELAXATION

BY PHONON EMISSION

In the above calculations, we neglected the effect of

the quasiparticle energy relaxation by phonon emission. To

check the validity of this assumption, let us estimate the

corresponding rate. For a quasiparticle with the energy much

higher than the phonon temperature, the rate of acoustic

phonon emission was calculated in Ref. [31]:

1

τph(ǫ)
=

16

315 ζ (5)

�ǫ7/2

DF

√
2�

. (57)

Here, ζ (x) is the Riemann zeta function. We also introduced the

effective coupling strength �, which controls energy exchange

between electrons and phonons for the material in the normal

state: the power per unit volume transferred from electrons

and phonons which are kept at temperatures Te and Tph,

respectively, is given by �(T 5
e − T 5

ph) [45]. The coefficient

� can be represented in terms of the microscopic material

parameters as

� =
6ζ (5) DF �2

πh̄4vF ρ0v4
s

, (58)

where � is the deformation potential, vF and vs are the Fermi

velocity and the speed of sound, ρ0 is the mass density of

the material, DF is the density of states at the Fermi level

for the material in the normal state, taken per unit volume

and for both spin projections. The coefficient � can also be

measured experimentally (see Ref. [46] for a review). Using

the parameters of aluminum, we estimate the phonon emission

rate at energy ǫ = h̄ωp for a single junction or ǫ = h̄ω1 for

a Josephson junction chain (Tables II and III). In the chain,

the phonon emission rate is smaller than the quasiparticle

tunneling rate, but the inequality is not very strong, and for

the single junction the two rates are comparable. Thus, a more

detailed study of the competition between the two relaxation

mechanisms is desirable. Such a study is beyond the scope of

this paper and will be the subject of a future publication [22].

VIII. CONCLUSIONS

To conclude, we have studied intrinsic dissipation due to

quasiparticle tunneling in a superconducting artificial atom,

represented by a single Josephson junction or a Josephson

junction chain. The artificial atom is assumed to contain

exactly one residual quasiparticle and is capacitively coupled

to a coherently driven transmission line. In contrast to

previous studies of quasiparticle-induced dissipation, we take

into account heating of the quasiparticle by the drive. For

simplicity, we assume that quasiparticle cooling by acoustic

phonon emission is inefficient and can be neglected, so

that the quasiparticle state is determined by the coupling

to the superconducting degrees of freedom. We show that

the corresponding intrinsic quality factor, as measured in

a transmission experiment, increases with the drive power.

This happens because the quasiparticle density of states

decreases with the quasiparticle energy, so at stronger drive

the quasiparticle tunneling is slower.
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