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Dissipation in a superconducting artificial atom due to a single nonequilibrium quasiparticle
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We study a superconducting artificial atom which is represented by a single Josephson junction or a Josephson

junction chain, capacitively coupled to a coherently driven transmission line, and which contains exactly one
residual quasiparticle (or less than one quasiparticle per island in a chain). We study the dissipation in the atom
induced by the quasiparticle tunneling, taking into account the quasiparticle heating by the drive. We calculate
the transmission coefficient in the transmission line for drive frequencies near resonance and show that, when the
artificial atom spectrum is nearly harmonic, the intrinsic quality factor of the resonance increases with the drive
power. This counterintuitive behavior is due to the energy dependence of the quasiparticle density of states.
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I. INTRODUCTION

Quantum engineering in superconducting nanocircuits is
a rapidly developing field, thanks to progress in sample
fabrication techniques which has been occurring in the past
decade [1]. Due to superconductivity, electromagnetic signals
propagate in such circuits with extremely low losses, and
the circuit properties can be tuned by applying an external
magnetic field. Using superconducting circuit technology,
a single microwave photon can be strongly coupled to an
artificial atom represented by a superconducting qubit [2].
An artificial atom (AA) can be probed spectroscopically by
coupling it to an open superconducting transmission line (TL)
and by measuring resonances in reflection or transmission of
TL photons at frequencies corresponding to the transitions
between the AA energy levels [3,4].

The AA transitions are broadened by a variety of mecha-
nisms. By analyzing the resonance shape, one can separate the
extrinsic broadening, which arises because of the coupling be-
tween the AA and the TL and is essentially due to spontaneous
emission of photons into the TL, and intrinsic broadening,
which is due to dissipation in the AA itself [5,6]. Here, we
focus on a specific intrinsic dissipation mechanism, which is
due to nonequilibrium quasiparticles. At low temperatures, the
quasiparticle density is expected to be very low, determined by
thermal activation across the superconducting gap. However,
many experiments indicate that residual quasiparticles often
remain trapped in the sample [7-12], and their recombination
can be extremely slow [13,14].

Many experiments involving residual quasiparticles
are successfully described by the theory developed in
Refs. [15,16]. This theory is based on the assumption of a
fixed average quasiparticle distribution which perturbs the
superconducting degrees of freedom; the resulting net effect
is equivalent to that of a frequency-dependent resistance
included in the circuit. Technically, this corresponds to a
description in terms of the AA reduced density matrix, while
the quasiparticles are treated as a bath whose effect can be
accounted for by standard dissipative terms in the master
equation. The fixed distribution assumption is valid in the weak
signal regime, when the back-action of the superconducting
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condensate excitations on the quasiparticles can be neglected.
This assumption must be reconsidered in situations when the
probing signal is strong enough to modify the quasiparticle
distribution and the latter can affect the quantities which are
measured.

Here, we study a simple model problem of an AA
which is capacitively coupled to a coherently driven TL, as
schematically shown in Fig. 1, and which contains exactly
one quasiparticle. Indeed, if the AA initially contains one
quasiparticle, it cannot escape into the external circuit because
of the capacitors, and has no partner to recombine with. At
the same time, we assume the drive to be not too strong, so
the system remains at low energy and new quasiparticles are
not produced. The AA is represented by a Josephson junction
(or a chain of junctions) whose Josephson energy strongly
exceeds the Coulomb charging energy. Technically, we derive
the master equation for the AA coupled to a TL analogously
to Refs. [17,18], but the quasiparticle degrees of freedom are
included in the reduced density matrix following the approach
of Refs. [19,20] and its application to a Cooper-pair box in
Ref. [21]. Here, we focus on the simplest case, assuming
the energy exchange with the AA excitations to be the only
mechanism of the quasiparticle energy relaxation and fully
neglecting acoustic phonon emission by the quasiparticle.
When both mechanisms are included, the competition between
them results in a variety of different regimes, which will be
studied in a forthcoming publication [22].

Under these assumptions, we calculate here the transmis-
sion coefficient in the TL and the intrinsic quality factor
of the AA transition, which depend on the coherent drive
strength. Indeed, the stronger the drive, the higher is the typical
quasiparticle energy, the lower is the quasiparticle density of
states, the lower is the probability of quasiparticle tunneling.
Thus, the intrinsic quality factor increases with the drive
strength (as long as new quasiparticles are not produced).
We also extend our calculation to the case when the AA is
represented by a Josephson junction chain containing a few
quasiparticles (less than one per junction) whose total number
is fixed, and calculate the corresponding intrinsic quality factor
of the electromagnetic modes of the chain, obtaining the same
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FIG. 1. A schematic representation of an artificial atom capac-
itively coupled to a superconducting transmission line. A coherent
signal is sent into the transmission line, whose reflection and
transmission are measured.

power dependence. Such power dependence has been observed
in high-quality superconducting resonators [23-25] and was
attributed to a saturation of two-level systems. The mechanism
discussed here may provide an alternative explanation for these
observations.

The paper is organized as follows: In the next section, we
give a qualitative discussion of the main physical ingredients
of our study and of the results. In Sec. III, we introduce the
theoretical model for the system “TL + AA + quasiparticle,”
include the coherent drive, and give the formal expression for
the transmission coefficient in terms of an operator average,
when the AA is represented by a single Josephson junction. In
Sec. IV, we derive the master equation for the junction and the
quasiparticle, which is solved in Sec. V. This study is extended
to the case of an AA represented by a Josephson junction chain
in Sec. VI. In Sec. VII, we give a simple estimate of the phonon
emission rate to check when it can be neglected. Finally, the
conclusions are given in Sec. VIIIL.

II. QUALITATIVE PICTURE

We study the setup schematically shown in Fig. 1. The
AA is represented by a Josephson junction whose Josephson
energy E; strongly exceeds the Coulomb charging energy
Ec = €*/(2Cy), where C; is the junction capacitance. The
energy of the transition between the AA energy levelsis fiw, =
~/8E;Ec, where w, is the junction plasma frequency. If the
junction happens to host a quasiparticle (for whatever reason),
the quasiparticle cannot be evacuated into the external circuit
because of the capacitors, and cannot recombine since the
electron number parity is conserved. The AA energy levels
are broadened due to (i) spontaneous emission of TL photons
with rate I't, and (ii) energy exchange between AA and the
quasiparticle with two rates F;;,Fq’p for the AA going to the
upper/lower energy level, respectively. 't and Fg; determine
the external and internal quality factors of the AA resonance,
respectively, and we assume FTL,F(E <L wp.

The microscopic mechanism of energy exchange between
the AA, built of the superconducting condensate degrees of
freedom in the Josephson junction, and the quasiparticle, is the
quasiparticle tunneling between the two sides of the junction.
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The rates of quasiparticle tunneling accompanied by excitation
or deexcitation of the AA can be estimated from the Fermi
golden rule as

. 8 Ej ho, A
~o =y 2 (D
® i A E; \ max{Te,hiw,)

Here, § is the normal-state mean level spacing of each
island forming the junction (for simplicity, the two islands
are assumed to be identical), while T, is the effective
quasiparticle temperature or, equivalently, the typical energy of
the quasiparticle counted from the quasiparticle band bottom at
Aj; it depends on the drive strength, as we will show in Sec. V.
The factor E;/A is of the order of the dimensionless junction
conductance in the normal state, according to Ambegaokar-
Baratoff relation [26]; it appears because E is proportional to
the square of the single-electron tunneling matrix element.
The factor fiw,/E; originates from the first off-diagonal
matrix element of the tunneling Hamiltonian in the AA
subspace. The last factor is the quasiparticle density of states,
assuming Ter,/iw, < A (otherwise, more quasiparticles can
be produced, which is not taken into account in the present
theory).

Strictly speaking, the use of Fermi golden rule requires the
energy spectrum of the final states to be continuous, while
here we are dealing with discrete spectrum. Indeed, the level
spacing § is finite because the islands have a finite volume,
and one cannot send § — 0 because then the tunneling rate
vanishes (this vanishing is due to the simple fact that § — 0
implies the volume going to infinity, so the quasiparticle just
never arrives at the junction). The AA energy levels are also
discrete. The use of the golden rule is consistent if the energy
levels are sufficiently dense, so that the rate exceeds the energy
spacing of the final states. This spacing is of the order of
§/max{Teq,fiwp}/ A, and it is easy to see from Eq. (1) that the
rates ' are always smaller. Thus, to allow the quasiparticle
tunneling, the AA levels have to be sufficiently broadened by
the photon emission Al't. 2 8 /max{Zes,fiw,}/A [27,28].

Thus, we are forced to consider the situation when the
internal quality factor is much higher than the external one
because of the condition F;; & I'rp. Then, the average degree
of excitation of the AA is determined by the balance between
the coherent drive and the spontaneous photon emission into
the TL. In turn, the quasiparticle effective temperature T is
determined by the AA degree of excitation and is found from
the solution of the kinetic equation. Then, T,¢ determines Ffﬁ)
and the internal quality factor.

Since we assumed E¢ < Ej, the lower part of the AA en-
ergy spectrum corresponds to a weakly anharmonic oscillator,
in the sense that the anharmonic correction to the energy levels,
~Ec, is smaller than the oscillator transition energy fiw,.
However, two different situations may arise depending on the
relation between E¢ and 'y If E¢ < I'r, tuning the drive
frequency in resonance with the first transition automatically
puts it in resonance with subsequent transitions, so the AA can
be treated as a harmonic oscillator (as long as its degree of
excitation is not too high). In the opposite case, E¢c > I'rp,
the second transition is automatically out of resonance; in this
case, AA is effectively a two-level system, also known as the
transmon qubit [29]. Below we present the theory for both
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cases; however, for realistic values of the system parameters,
the AA represented by a single Josephson junction corresponds
to the qubit limit. It turns out that in the qubit limit, the
effect of quasiparticle heating is always masked by the power
broadening of the AA transition.

The harmonic limit turns out to be relevant for a slightly
more complex realization of the AA, a chain of Josephson junc-
tions. Sufficiently long chains have isolated resonances with
high quality factors [6], while the nonlinear correction to the
transition frequency scales as the inverse of the number of junc-
tions in the chain [30]. The number of quasiparticles should be
proportional to number of junctions, but when there is much
less than one quasiparticle per junction, the quasiparticles can
be treated independently, so the theory developed for one junc-
tion is straightforwardly extended on the case of a long chain.

Our main result is that in both cases the intrinsic quality
factor due to the quasiparticle tunneling increases with the
drive strength (as long as new quasiparticles are not produced).
The reason for such behavior is very simple and general: the
stronger the drive, the higher is the typical quasiparticle energy,
the lower is the quasiparticle density of states at such energies,
so the lower is the probability of quasiparticle tunneling.

Our calculations are done assuming that the energy ex-
change with the AA excitations is the main mechanism of the
quasiparticle energy relaxation, and fully neglecting acoustic
phonon emission by the quasiparticle. The latter is known
to quickly slow down for low quasiparticle energies [31]; a
simple estimate for typical parameters shows that the phonon
emission rate is indeed smaller than the quasiparticle tunneling
rate; however, the inequality is not very strong. Thus, a study
including both mechanisms is needed and will be reported
elsewhere [22].

III. MODEL

A. System Hamiltonian

We consider an artificial atom represented by a single
Josephson junction (JJ), made of two superconducting islands,
and coupled to a transmission line (TL) by a capacitance C,
and grounded via a capacitance C,,, as shown in Fig. 2. The TL
is characterized by its inductance L, and capacitance Cy per
unit length, and their ratio determines the TL impedance Z, =
+/Lo/Co. We model the TL by a discrete array of inductors and
capacitors with the discretization length x|, the limit x; — 0
to be taken in the end. The JJ is characterized by two energy
scales: the Josephson energy E; and the charging energy
Ec, related to the Josephson inductance L; and the junction
capacitance C; as E; = (h/2e)*(1/L,) and Ec = ?/(2C)).
In the following, we assume E; > E¢, then the quantum
fluctuations of the superconducting phase are small and the
JJ can be viewed as a weakly anharmonic oscillator whose
linear frequency is the JJ plasma frequency w, = 1/+/L;C}.
We assume that the JJ hosts a single quasiparticle which can
tunnel between the two islands, but cannot leave the junction
because of the capacitors. This system can be described by the
following Hamiltonian:

H = Hy + Hry + Hyro + Hyp + Higp- 2

The first three terms describe the JJ, the photons in the TL, and
their coupling, respectively. They are given by the sum of the
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electrostatic energy of each capacitor and the energy of each
inductor:

a - % +E(1 200, (3a)
= — — oS , a
S Yol )

. Qo (b, — Dpi1)?
H —’

= 2C ;T Z 2C0x1 Z 2Lox;

(3b)
ﬁJTL = Q0o (3¢c)
Cy

Here, Qn;&() is the operator of charge on the upper plate of the
nth capacitor Cox; and d, is the corresponding canonically
conjugate flux, [Q,,, &,,] = —ihs,,, whose time derivative
is the voltage on the node n. At n =0, CTDO is related to
the voltage of the node n = 0, while & is related to the
voltage drop across the junction. The conjugate charges Qg
and Q are given by the appropriate linear combinations of
the charges on the three capacitors C.;, C, and C;. The
electrostatic energy of the n = 0 node is expressed in terms of
C. = C.Cx/(C + C,2), the series capacitance of capacitors
Cc1 and Ccp. The electrostatic energy of the junction is given
by ( Qo + Q 1)2 /(2Cy), and it is split between the three terms
H] + HTL + H]TL The superconductlng phase difference on
the junction is given by ¢ = (2¢/h)®; (we assume e > 0, so
the electron charge is —e).

The last two terms in Eq. (2) describe the quasiparticle and
its interaction with the superconducting phase difference on
the JJ [15 16]:

Hp =" elip)ipl, 3d)

j=ul p
Hiqp = Z,Tl)p’(up”p’ — vpope”®/Mu,p)(Lp’| + H. c.
p.p

(e

Here, |j,p) is the state of the quasiparticle on the upper or
lower island of the junction, j = u,l, with momentum p. The
VE H A=
the gap A, are assumed to be the same for both islands.
The quasiparticle energy in the normal state &, determines
the normal-state density of states per spin projection, which

can also be represented as the inverse of the mean level spacing
8 on each island:

quasiparticle energies €, = A, measured from

1
5=2.0& 6. )
P

6 is assumed to be energy independent. Being inversely
proportional to the island volume, § is small but finite. The
quasiparticle density of states is given by

2 O(e)e+A)
= 8 - = - ) 5
v(©) XP: (& =€ 8 Je+ A2 — A2 ©)

where 6(¢) is the Heaviside step function. The quasiparticle
Bogolyubov amplitudes are given by

1 §
2 o= (1-—2 ). 6
" R e+ A ©
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FIG. 2. A schematic circuit representation of a Josephson junction coupled to a transmission line, modeled as an infinite discrete array of

inductors and capacitors.

The tunneling matrix elements ’ZI,p/ are assumed to be real,
symmetric, and energy independent, in which case they are
related to the Josephson energy by the Ambegaokar-Baratoff
relation [26]

E,
D Todley — )3 —e) = — . @)
p.p
Below we assume that the quasiparticle energy always remains
small, €, < A, so we approximate ep ~ ég/(ZA), v(e) ~
(1/8)/2A €, and we expand up,vp ~ 1/3/2 £ (1/2),/6,/A.
Also, in the regime of small phase oscillations, we expand

¢%e®i/h ~ 1 4 2ied, /h. Then, the matrix element of the
tunneling Hamiltonian (3e) becomes

Vet & ied,
V2A ho

The first term of this expression corresponds to elastic
quasiparticle tunneling without changing the JJ state; when
inserted into the Fermi golden rule, it produces the estimate
for the tunneling rate given in Ref. [28]. The second term
describes quasiparticle tunneling which induces a transition
between the JJ energy levels up or down by one level, and is
the crucial ingredient for the master equation, derived below.

2ied, /h ~

UpUy — UpUpé€

B. Coherent drive and transmission coefficient

In the following, we assume that the JJ is probed by sending
a coherent wave in the transmission line and measuring its
amplitude transmission coefficient S,;. Our calculation will
focus on the dynamics of the JJ degrees of freedom, O, and
d 7, so we would like to express the observable S; in terms
of the quantum average (0;). To do this, let us write the
Heisenberg equations of motion for the TL operators:

dQn Cbn+1 + C,I\)nfl - 2&)n
= , (8a)
dt Lox;
a8, 0, (n#0) (8b)
= n N
dt Coxi
dd ) ) )
0o_ Qo , Qo 0Oy (80)

=020 X
dt C. Cy cy

These equations are linear, so their solution can be formally
written as

0u(t) = OF(t) + /

—00

t

Gt —t)Q,(hat', (9

where Qﬂ“’e(t) is a solution for the free TL (i.e., taking
into account the Hamiltonian ﬁTL only), while the last term
represents the effect of I:I]TL with Q s(¢) treated as a source.
G,(t — 1) is the retarded Green’s function, given by

, dw
Gn(t_t)zfg

1 — 8,0 cot(k,,x1/2)]Cox; C.etkelnlx
Go(w) = [1 —i8u0 cot(kyx1/2)] ox1. e Can
C.Cy— Cox1(Cy + CH[1 — i cot(k,x1/2)]
where k,, is the wave vector, related to w by the TL dispersion
relation

TG (w), (10)

2.2
WX L kexy 1
L — 4gin® 22—, ?

v? 2 L()CO ’
In the continuum limit x; — 0, nx; = x, G,(w) = x;G(x,w),
the expressions simplify as k,, = /v and

_iwfc(CO/C.J) 1 — 2ivd(x) eiwlxl/v’ (13)
1+C./Cj —iwT, w

where t. = C.Zy/2is the classical RC time of the C, capacitor
coupled to the TL.

The free part Qf{ee(t) is assumed to be the sum of the
vacuum part with zero quantum average and the classical part.
The latter contains the incident coherent wave with frequency
w4, momentum k,; determined by the dispersion relation (12),
and voltage amplitude V,, as well as the scattered wave:

12)

g(x,w) =

Afree
t joat i i
(@, @) — Vyeiout (gikamxt | poikanliny (] 4 25 0
CoX]
+c.c., (14)
L i¢ tan(kgx1/2) r=——<7 1. 1%

1—-i¢ tan(kdxl/Z)’ (C. 4+ Cj)Cox;

The scattered wave appears in Qf{ee(t) because Hrp, in Eq. (3b)
is not translationally invariant. Indeed, the n = O site differs
from all other sites by the coefficient of Q% Thus, left- and
right-traveling waves are not normal modes even for the “free”
TL. Taking the quantum average of Eq. (9) and the ratio of
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the transmitted wave amplitude to the incident one [note that
the last term in Eq. (9) does not contain the incident wave],
we can relate the transmission coefficient Sp; to the average

(0s(1)) = QreTie 4 Q% el@dl as

So1(ey) = 1+C/Cy— ia)dch+/(CJVd)’ (16)
14+C./Cy —iwyT,
where the continuum limit x; — 0 has been taken.

In the next section, we will study the master equation for
the JJ and the quasiparticle, treating the TL as a bath. It is
much simpler to write the master equation when the bath
is in the vacuum state rather than in a coherent state. Thus,
we will replace the above system with the driven TL by an
equivalent one, where the TL is in the vacuum state, but the
oscillator is driven directly. To see this equivalence, we write
the Heisenberg equations of motion for Q; and ®,:

=— sin — , a
dt 2eL,; o h Tap: O
dd ) )
o, _ 9y + Qo (17b)

dt _Cj Cj.

The 1] is driven by the incident coherent wave via the last term
Qo /C ;. Let us now recall that Qo can be represented in the
form (9) where the first term Qf{ee contains the vacuum part
and the coherent part including the incident wave, while the
second term in Qo does not contain the incident field. Thus, the
Heisenberg equations for O, &, will have exactly the same
form if we assume eree to have only vacuum contribution,
while O is driven by an external voltage V; () = ( free) /Cy.
In other words, the JJ quantum dynamics is the same if no
incident field is sent in the TL, but an additional driving term
is introduced in the JJ Hamiltonian:

A~ C. Vdeiiwd’
Hy = — - +c
Cj 1+Cc/Cj—lwdTC
The perturbative master equation derived in the next section
assumes the weak-coupling limit, that is, C. « C; and

wpCcZy K 1. Then, the denominator in the brackets can be
set to unity.

c.)Q,. (18)

IV. MASTER EQUATION

It is convenient to rewrite the bosonic part of the Hamil-
tonian in terms of the creation and annihilation operators.
For the JJ operators we have the standard harmonic oscillator
expressions

&= "Zrarah, 0= |28 g
=4 = ar+a), = ,
! 2 TTN2z, i

where the JJ impedance Z; = /L ;/C/; then, the harmonic
part of the JJ Hamiltonian becomes ha)p(&sz + %), where
the plasma frequency w, = 1/4/L;C;. For the TL in the
continuum limit, nx; — x, x; — 0, we introduce the fields
&, —> d(x)and 0, — x14(x), which are expressed in terms
of normal modes of the Hamiltonian Ay [Eq. (3b)]. As
discussed in Sec. III B, these normal modes are not given by
left- and right-traveling waves because of scattering at n = 0.
Taking advantage of the symmetry n — —n, we separate the
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normal modes into even (e) and odd (0), so the flux and charge
density fields are represented as

3 > hZo [ » 5 x|
q>(JC)=/ dw | —|(bew + b! ) cos —+9
0 2w ’

+ (Bow + bl ) sin —x} (20a)
szZO
c 5 d
4 = [ 0+C +c, (x)}/ o

x |:be’w fbe’w cos (a)lxl +6, >

1
I; a)_i;rw

4 Zow = D0 mﬂ]. (20b)

1 v

Here, 6, = arctan[wt./(1 + C./Cj)] is the scattering phase
shift, and the commutation relations for the bosonic operators
are

6Bl ] =878 — ), j.j =eo. (21

Note the §(x) contribution to §(x); it corresponds to a finite
A +

value of Qy = foo, g(x)dx. The resulting Hamiltonian takes

the form FIO +H 1, where

o0
Ay = / doo fioBeobl, + Boubi,)
0

+ I_’]J _ ih(Qefiwdt + Q*eiwdf)(& _ &T)

+ Z 5 S2-(I1,p){L,p| + [u,p) (u,p), (22a)
H =— / do hx(o)(be,, — B! )@ — ab)
0
+ Y iTyy(ILp){u,p'| — [u,p)(Lp'D@+a"),  (22b)

p.p

where ﬁo describes the TL photons, the JJ excitations (plasma
oscillations) driven by an external force [related to the incident
wave amplitude via Eq. (18)], and the quasiparticle, while H;
describes the coupling between the TL and the JJ, as well as
the JJ coupling to the quasiparticle. The coupling constants
for the JJ-TL coupling, the external drive strength, and the
JJ-quasiparticle coupling amplitude are given by

Cz)Zo CC
k(w) = , (23a2)
4nZ; J(Cj+ CoP* + (0C.CyZy)2)>
Cc Vd

T C 4+ Co—iwgCCrZ0)2 J2RZ,

~ [hw,
Tpp/ = E%p“

The master equation is obtained assuming the following
ansatz for the density matrix of the full system (the TL, the JJ,

(23b)

(23¢)
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and the quasiparticle) to hold at all times [19-21]:

. R Lp){L,pl + [u,p){u,p| _ .
full 4y = E t | . (4
p(@) : Pp(H) ® 7 ®p. (24

Here, ot is the density matrix of the TL which is treated as an
infinite bath, so its state cannot be changed by interaction with
a finite number of degrees of freedom. We assume pr, to be
that of the vacuum state (as discussed in Sec. III B, the effect
of the incident wave is incorporated into the driving term in
the Hamiltonian). The quasiparticle is assumed to be located
on any of the two islands with equal probability [28], thus
the density matrix of the subsystem “JJ + quasiparticle” is
proportional to the unit matrix in the island index j = u,l.
We also assume the density matrix to be diagonal in the
quasiparticle momentum, thereby neglecting any coherence
between different quasiparticle states (this assumption is
discussed in more detail later in this section). Thus, §, is
the nontrivial part of the system density matrix which remains
after having factored out the vacuum prp. and the unit matrix
in the island index.

The subsequent steps are quite standard. Passing to the
interaction representation,

Iafull(t) _ e—iﬁot/h p’lfull(t) eiﬁoz/h’
Ifll(t) _ e—iﬁot/ﬁ H1 eilflot/ﬁ’

and treating H; as a perturbation, we obtain the equation for
op(t) as

dp, !
Pp(t) :_i/ dr'
dt "2

—00

3Gl Ter (L @)L LA (), 5™ )T ),

j=ul

(25)

where the trace is taken over the TL variables. Using the
Markovian approximation for the time integral, neglecting fast
oscillating terms, and going back to the original Schrédinger
representation, we arrive at the following master equation for

ﬁp(t):
dpp I~ —iwgt 51 *iwgt 5
= p Al QA — QT a, py)

anat DT ara 4
+ I appa’ — T{CITG,Pp}

a)p82 A At
+ A 28(61, —how, —ey)apya
=~

2
@pd Zé(e + lhw, — €y)al pya
A 2 P p — €p P

w,8? Z At A
B S;A " 3(ep + o), — €p) {aTa,pp}

w,8? o at oA
- S;A Ep, 8(ep — hw, — ey){aa', pp}
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. Wpd 1 At A
- P .
"812A ; €+ hw, — €y (a7a.fy]

; ot PR — [aal,ppl,  (26)
— i aa',ppl,
82A el —hw, — €y o
where P denotes the principal value and I'rr, is the JJ excitation
decay rate due to emission of TL photons in the weak-coupling
limit:
wp(Zo/2Z)C? _Ce

= ~ — . 27
C +C + o2z, o S, e GD

't

Since pp can depend on p only via energy e, itis convenient
to pass to

o1 R &
plen =1 ;‘W)‘S(ﬂ - e>, (28)

with the normalization [ Tr p(€) v(€)de = 1, where v(e) ~
(1/8)s/2A /€ is the quasiparticle density of states, defined in
Eq. (5) above. Then, the master equation takes the form

00 [ A . , .
’(;(:) =— ;—[HJ,,[)(G)] + [Qe 7l — Q' a, p(e)]
foaat DTL ata
+ I'Laple)a’ — T{a a,pe)}
wpd 2A i
—h
+ 4T A e—ﬁw,,ap(é @p)d
n wpd 2A At ble + heo)
——a'p(e w,)a
dn A\ € + how, P r
)0 2A {A}LA 5())
- — | ——{a'a,p(e
8T A\ € +liw, P

w,0 2A Aat A
8HA,/ P {aa’, p(e)}
L0 |28 aat e (29)
8T A\ hw, — € PR

where the square roots should be set to zero if the argument is
negative. In the next section, we will use Eq. (29) to study the
JJ dynamics in the presence of the quasiparticle.

Let us now discuss the assumptions made in the derivation
of Eq. (29). Using the Markovian approximation for the time
integral in Eq. (25) is equivalent to calculating the transition
rates in Eq. (29) from the Fermi golden rule. In both cases,
it is important that the energy spectrum of the final states for
the transition is continuous, or at least discrete but sufficiently
dense, so that the level spacing is smaller than the obtained
transition rate. For the photon emission into the TL, this is
perfectly valid because the TL photon spectrum is continuous.
However, the quasiparticle levels are discrete, and the relevant

energy level spacing is ~§,/max{e,iw,}/A, which should
be compared to the typical rate ~§(w,/A),/A/ max{e,iw,}

from Eq. (29). It is easy to see that the rate is always smaller.
Thus, for the above derivation to be valid, we need the
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TL-induced broadening 'y, to be sufficiently strong compared
to the level spacing and thus to the quasiparticle tunneling
rate [27,28]. In the opposite regime of weak TL-induced
broadening, due to energy conservation the quasiparticle
would be unable to absorb or emit a quantum /iw,, unless
assisted by some extrinsic process (such as phonon emission).
In other words, replacement of the p sum by the integral
in the four terms with § functions in Eq. (26) would be
incorrect. These terms would simply vanish, as the arguments
of the delta functions would never be zero, and keeping the
corresponding terms in Eq. (29) would lead to unphysical
results; electron-phonon coupling, for example, should be
explicitly introduced to allow the absorption/emission process.

The very same broadening mechanism that justifies
the Markovian approximation also enables us to neglect the
quasiparticle coherence (the off-diagonal elements of the
density matrix in the quasiparticle subspace with different
momenta and/or between different islands). Indeed, when the
quasiparticle performs a transition from a level with the energy
€ on one island into a bunch of levels with energies spread
over an interval of width ~/iI'ty, around € & /iw,, on the other
island, the off-diagonal terms beating at relative frequencies
~T'rp. have already dephased on the quasiparticle tunneling
time scale. Thus, the quasiparticle is treated as a “minibath,”
in the sense that the coherence is neglected, but change of the
quasiparticle state by exciting or deexciting the JJ is accounted
for [20].

So far, we did not assume the separability of the density
matrix p(€) into a product of the JJ and quasiparticle matrices.
However, the smallness of the quasiparticle tunneling rate with
respect to the photon emission rate enables us to do so. Indeed,
during the time the quasiparticle stays on one level, the JJ
exchanges many photons with the TL and fully samples the
allowed part of its Hilbert space. Thus, in the following we
will use the separable form p(€) = p; f(€), where p; is the
JJ density matrix which does not depend on the quasiparticle
energy, and f(¢) is the quasiparticle distribution function. Both
are normalized:

Trp; =1, [00 fe)v(e)de = 1. (30)
0

To conclude this section, we estimate the change in the
superconducting gap due to the presence of one quasiparticle.
Let A be the gap in the absence of quasiparticles, and A the
gap with one quasiparticle. Then, the self-consistency equation
can be written as

/A de/s
—A /52 + A%
(€29

where A is the high-energy cutoff (of the order of Debye
frequency). Performing the integration under the assumption
€ =/&2+ A?2 — A < A and using the normalization (30),
we obtain A = A — §. Note that since the Josephson energy
is a symmetric function of the gaps in the two electrodes,
the tunneling of a single quasiparticle does not change E; and
hence the AA frequency. This is in contrast with the addition of
quasiparticles, which suppresses E; and hence the frequency

Adgss
=[] ———[1-2AVEX+ A2 - A)],
f_A Tl Ve )]

PHYSICAL REVIEW B 96, 214508 (2017)

[15,16]. Therefore, in the present case only the last term in
Eq. (29) can alter the frequency, as we will discuss in the next
section.

V. SOLUTION OF THE MASTER EQUATION
A. Role of anharmonicity in the junction

Our starting assumption E; > Ec, equivalent to Ec <«
hw, = «/8E;Ec, implies that the anharmonicity in the junc-
tion is weak. However, this does not automatically mean that
the junction can be treated as a harmonic oscillator. Let us
expand the cosine term in Eq. (3a) to the fourth order:

. 1\ E
Ay = ho, <a*a + 5) —~ 1—20(&* +a). (32)

Since Ec = €2/(2C)) K hwy,, the last term produces an
anharmonic correction to the JJ level energies, E, = fiw,(n +
1/2) — (EC/Z)(n2 + n + 1/2). For not too large n, the anhar-
monic correction to the transition energy E,.; — E, is small
compared to /iw,. However, we are studying a resonantly
driven junction, so we are interested in drive frequencies wy
close to the transition frequency:

|En1 — Ep — hag| ~ AT (33)

Then, even though E¢ < hw,, the difference in energies of
the first two transitions (E, — E1) — (E; — Eg) = —E¢ can
be large compared to I't, if E¢c > Al'rp. In this case, the
resonance condition (33) can be satisfied only for one of the
transitions, so the JJ effectively behaves as a two-level system,
also known as the transmon qubit [29]. In the opposite limit,
h't. > Ec, the JJ can be treated as a harmonic oscillator,
provided that its degree of excitation is not too high. Below
we will consider both these limits separately. The qubit limit
will be treated by simply truncating the JJ Hilbert space to two
levels and by replacing the creation and annihilation operators
a',a in the master equation (29) by the Pauli raising and
lowering counterparts o4, o_.

B. Effective quasiparticle temperature

The kinetic equation for the quasiparticle distribution
function f(€) is obtained by taking the trace over the JJ
variables in Eq. (29):

If(e)  wyd?
ar 4w A

v(e — liw,)[ii f(e — hwpy) — (1 F i) f(€)]

2
+ :'T"SA v(e + ho)(1F i) f(e + hwy) — A fE)],

(34)

where 7 = Tr{o,0_p,;} or @i = Tr{a'ap,} is the average
number of excitations in the JJ in the qubit or harmonic limit,
respectively, and the upper (lower) sign corresponds to the
qubit (harmonic) limit.

We are interested in the stationary situation, so we assume
i1 to be constant. Then, the stationary solution of the kinetic
equation (34) is [32]

fle)= e T g(e), (35)

8
2Ty A
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where 6(¢) is the step function, and we defined
_ hw,
T In(l/aE 1)’

which has the meaning of the JJ effective temperature. We
emphasize that this is just a convenient notation; the JJ is not
in a thermal state [33].

T, (36)

C. Junction state

To find the JJ state, we multiply the master equation (29) by
v(€) and integrate with respect to €, which gives the equation
for the JJ density matrix p;(¢):

00 . ,
% =—i@yla'a.ps]+ Qe ™" a" — Q*e'™a,p]
+ (P + T,) D@) ps + T D@ o,
+ T3 D@'a) py,
A A oA 1 As A 1 A
D(0)p; =0p,0' = 5 010p, = 55,00, 37

written here for the harmonic limit; in the qubit limit one
should just replace a' — oy, @ — o_, a'a — (o, + 1)/2.
The last term in Eq. (37) represents a pure dephasing contri-
bution with the rate Iy that we include phenomenologically.
Other dissipation mechanisms in the artificial atom can be
straightforwardly incorporated into the master equation (37);
in the weak-coupling approximation, the corresponding rates
should be simply added to the absorption, emission, and
dephasing terms of the equation. In both qubit and harmonic
limits, the rates F;@ of the JJ excitation/deexcitation by the
quasiparticle are given by

- — w, [ fle)de
P2 o Jele + hwy)’
+_wp ® fle + hwy)de

® 21 Jo Jele +hw,)

These expressions are smaller than those in Ref. [34] by a factor
of 4; this is because in that reference equal occupation was
assumed for each spin and at both sides of the junction, while
here we have a single quasiparticle. Similarly, the renormalized
frequency @, includes a shift due to the interaction with the
quasiparticle, but with a smaller prefactor than in Ref. [16] (and
no contribution from Andreev states since the quasiparticle is
assumed to be in the bulk):

(38)

i Lo [T flede
w, =w — —_—
P Jeho, — €)

4 0

with the upper (lower) sign for the qubit (harmonic) limit.

Equation (37) has the form of the standard master equation
for a driven harmonic oscillator (or a driven two-level system
in the qubit limit) coupled to a Markovian bath [33]. The
difference from the standard case is that the rates I'f, depend
on f(¢€), which, in turn, depends on g itself. For the stationary
distribution function (35), they are given by

TF =Toe™*y2x/m Ko(x), (40)

(39)
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where K(x) is the modified Bessel function, and

T @l
2V 2A 27y

These expressions are different from those obtained in
Ref. [34] under the assumption of equilibriumlike form for
the distribution function: the difference stems from the fact
that here the quasiparticle number is fixed to one. Also, we
remind that here we assumed /Ziw, < A; corrections can be
calculated analogously to Ref. [34]. The following asymptotic
expressions for low and high temperature illustrate the overall
behavior of the rates Ff;, from Eq. (40):

0

l"q_p ~ I, 1"(']; ~ Toe /T T, « how, (42a)
h h 4T
IF ~ o o (14 22 ) In—L Ty > hw,.
P JTT_] ZTJ tha),,
(42b)

Here, y = 0.577... is the Euler-Mascheroni constant. The
renormalized frequency can also be calculated explicitly by
substituting Eq. (35) into Eq. (39). Denoting with &,y the
renormalized frequency in the limit 7; — 0, we have

/ 1
@y — dpo = £y |:e—)( %IO(X) - §:| (43)

with @,0 = w, £T0/2. In the limit 7, — oo, we find
p —> wp.

The stationary solution of Eq. (37), found in the standard
way (namely, by rewriting it as Bloch equations in the qubit
limit or by acting on it by d and tracing in the harmonic limit),
determines the stationary oscillating coherent polarization in

the two limits:

_Tw o [Tg/2—i(@) — wg)] Qe

" Tuot (@) — @4 +T3/4 +2|QPTy/ Tt
Qe—iwdt

i(@p — wg)+ (T, +T3)/2°

Fn = FTL+Fq_p_F;];v

Coe =L + F(i, + F;;,

(o_) (44a)

(@) = (44b)

F¢ = Ft0[+F;.

Equation (44a) coincides with the textbook solution of the
Bloch equations [35] for F(;, = 0. Here, ', has the meaning
of relaxation rate for the excitation number, and I'y/2 is the
total dephasing rate. The average number of excitations 7 is
found straightforwardly in the two limits. It is more convenient
to give an expression for e"“»/7/ | which has the same form in
both cases,
T|QP + (P + Tp)l(wa — @p)* + T?/4]

hw, /Ty _
e = , (45
F|Q|2+F(Jﬁ;[(a)d —@p,)* +T?/4] )

provided that one substitutes I' = I'y, in the qubit limit and
I' = I'), in the harmonic limit. Since the rates Fjﬁj dependon 77y,
Eq. (45) is a self-consistency equation for 77, strictly speaking.
However, if one studies the right-hand side of Eq. (45) as a
function of fiw,/T;, treated as an independent variable, it
turns out that this function varies in an interval between two
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finite values, and this interval is very narrow for I'g < I'yp.
In fact, to find 7, as a function of the drive amplitude V;,
or of the incident power Py, = 2|V,|*/Zy = 2ﬁa),,|§2|2/ VR
one can simply neglect l"fp and the frequency renormalization
in Eq. (45), whose right-hand side then becomes 1 + [(w; —
w,)? + T2, /41/|Q|*. Then, the input power and the effective
temperature are related by

n (wa — wp)* + T} /4 ho, P.

=14+ -—". (46
IﬂTL/z Pin +Pm ( )

Gon/Tr — 1

D. Transmission coefficient and quality factors

Equations (44a) and (44b), together with Eq. (19), de-
termine the average (Q,(¢)), which, when substituted into
Eq. (16), gives the following expressions for the transmission
coefficient in the qubit and the harmonic limits, respectively:

iFTL Fn a)—cT),,—zF¢,/2
521(a)) =1- > B ) >
2 Tt (w—wp)* + F¢/4 + 2|Q[°Ty/ ot
(47a)
i I/2
So(w) = 1 — i/ (47b)

w—ad,+i(,+T})/2

where we used Eq. (27), as well as the weak-coupling
assumptions C. < C; and w,C.Zy < 1. We also consider
driving not too far from resonance, |ws — w,| K< w,. For
Fg; =0, Eq. (47a) coincides with Eq. (55) of Ref. [18].
Equation (47b) can be compared to the phenomenological
expression for the transmission coefficient near a resonance
[5,24,36,37]:

®—wo+iwy/(29;)
® — Weo +iwe/(2QD;) +iwy/(2Qe)

Here, S5} is the constant high-frequency asymptote, wy and
wy are the resonant frequencies with and without coupling to
the TL (in our weak-coupling limit, they both coincide with the
quasiparticle-renormalized plasma frequency @), and Q. and
Q; are the external and internal quality factors, respectively.
Thus, we adopt the following expressions for the external and
internal quality factors in terms of the quantities, calculated
above:

Sa1(w) = S37 (48)

wp, _2Z; C;
I'm.  Zy C*

Wp
r;+r;p+1“(§,izr;p’
(49)

Qe: Qi:

where the upper (lower) sign in the expression for Q;
corresponds to the qubit (harmonic) limit and we neglect small
corrections due to the frequency renormalization.

While Eq. (49) is straightforwardly obtained by comparing
Egs. (47b) and (48) in the harmonic limit, for the qubit limit
Eq. (47a) can be cast into the form (48) only when the
power broadening term oc|Q|? in the denominator of Eq. (47a)
is neglected. Otherwise, Fi cannot be extracted from the
transmission measurement since the broadening is dominated
by the 2|Q|2F¢/ e term. Thus, we are interested in low
powers, such that

8|12 « Ny ly ~ ', (50)

PHYSICAL REVIEW B 96, 214508 (2017)

TABLE 1. Parameters for a Josephson junction coupled to a
transmission line, taken from Ref. [30]. Superconductor material
parameters are taken for aluminum [39,40].

TL impedance Z, 50 @
JJ inductance L 4.1 nH
JJ capacitance C, 4.2 fF

Coupling capacitance C, 8 fF
Superconducting gap A 200 ueV = 2xh x 50 GHz
Density of states Dy 1.5x 10 J"'m3
Island volume 0.02 pum?
Electron-phonon coupling 20x 10 Wm—3 K™

For near-resonant driving |wgy — wp| < Ty, this is equivalent
to Py, < P,. This condition then implies, via Eq. (46), low
quasiparticle effective temperature 7; < w,. In this case,
we have F;; < F(i), and since l"(ia ~ 'y is independent of
power, we conclude that quasiparticle heating does not lead
to a measurable effect on the transmission in the qubit case:
when the pumping power becomes significant enough to heat
up the quasparticle, the power-dependent broadening of the
resonance is determined by the direct contribution from the
drive rather than the indirect one due to the quasiparticle
tunneling.

In the above considerations, we have neglected the pure
dephasing rate I'j. Experimentally, it can be made as small
as F;; ~ 10 kHz (see Ref. [38] and references therein for a
recent discussion), a value comparable to Iy (see Table II).
Theoretically, one can estimate the pure dephasing rate I'y
due to the quasiparticle as done in Ref. [34]; it is shown there
that such dephasing rate is of the order of the elastic tunneling
rate FSL [28]. The latter, for realistic parameter values, is in
principle power dependent, but is at most comparable to I'y
(see Tables I and II). Therefore, including I'§ does not change
our conclusions for the qubit regime.

In Fig. 3 we plot Qj, relative to its low-power value Q;y =
wp/ T, as a function of the dimensionless input power P,/ P;,
as obtained from Eqgs. (40) and (46), for the harmonic limit and
neglecting the pure dephasing I'y for simplicity; in the inset,
we display the nonmonotonic dependence of the renormalized
frequency on input power. For numerical estimates, we use
structure parameters from Tables I and II, corresponding to
the experiment of Ref. [30]. For these parameters, the junction
is well in the qubit limit E¢ > ATy. In fact, the parameters
of Ref. [30] do not match well our assumptions for a single
junction (we assumed hiw, < E;,A), so our theory is valid
for somewhat larger junctions with larger C; and E;, and

TABLE II. Energy scales for a Josephson junction coupled to a
transmission line, derived from the parameters in Table L.

Josephson energy E,
Charging energy e%/(2C;)
Plasma frequency /iw,
Mean level spacing §
Photon emission rate il
Quasiparticle rate /il"y
Phonon rate /i /tyn(e = hiw),)

160 ueV = 2xh x 40 GHz
20 ueV =2mh x 4.6 GHz
160 neV = 2nh x 40 GHz
3.6neV =2xh x 0.9 MHz
1.7 ueV =2nh x 0.4 GHz
0.4neV =2n/h x 90 kHz
0.9neV =2xh x 0.2 MHz
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FIG. 3. Plot of the internal quality factors Q;, relative to the low-
power value Q;p = w,/ 'y, as a function of the dimensionless input
power P,/ P, for the harmonic limit, neglecting the pure dephasing
contribution. Inset: normalized frequency shift (@, — @,0)/ o vs
dimensionless input power for the harmonic case.

lower plasma frequency, which are quite feasible [6]. We chose
Ref. [30] because a long JJ chain was studied there. In the next
section, we show that the harmonic limit is relevant for an
artificial atom represented by a JJ chain, and our assumptions
are valid for chains with parameters as in Ref. [30].

VI. FEW QUASIPARTICLES
IN A JOSEPHSON JUNCTION CHAIN

The theory developed in the previous sections can be quite
straightforwardly extended to the case when the artificial
atom is represented by a more complex system: instead of
a single Josephson junction coupled to the transmission line,
we consider a chain of N — 1 junctions connecting N islands.
Each junction is characterized by the same parameters E; and
C, as before, and, in addition each island is assumed to have
a small capacitance C; < C; to the ground. The first island
is coupled to the TL via a capacitance C.. Such a chain has N
eigenmodes with frequencies [6,41]

c k
P _BC o sees™ 51
Cy, + BCy N

where k =0,...,N -1 and w, =1/+/L;C; is the same
plasma frequency as before. For sufficiently long chains,
N 2 ¢, =,/C;/C,, the first few modes are well separated
in frequency from each other and from the rest of the modes.
Any of these first modes can be treated as a harmonic oscillator,
and all the theory developed above for a single junction can
be applied to this mode as well, with some modification of
parameters. Namely, the rate of photon emission into the
transmission line becomes

2 wlt.C,
M= — —*k<<¢ (52)
N C, + BCy

The anharmonic correction to the energy of mode k with
ni photons can be written as (5 Ky /2)n%, with the self-Kerr
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TABLE III. Parameters and energy scales for the lowest mode
of a 200-junction chain coupled to a transmission line, taken from
Ref. [30].

Island ground capacitance C, 0.12 fF

Chain length N 201

Lowest mode frequency fiw,; 15 neV =2xh x 3.5 GHz
Self-Kerr coefficient i K 1.2neV =2k x 0.3 MHz
Photon emission rate Iy, 40neV = 2xh x 10 MHz
Quasiparticle rate /il" 1 peV =2xh x 0.26 kHz

Phonon rate /i /tyn(e = hiw,) 0.2peV =2nh x 50 Hz

coefficient Ky given by [30]

(han® " . 4 wkj  3(ay)?
hKy = —— — = . 53
K 2_sin N  16NE, (53)

Numerical values of parameters for the lowest mode k = 1
of a chain of N = 201 islands, given in Table III, show that
the mode is in the harmonic limit, due to low frequency and
large N.

The quasiparticle state is now characterized by the island
number j = 1,...,N, as well as momentum p. The quasipar-
ticle can tunnel across any of the N — 1 junctions, with the
Hamiltonian

Aip =Y iTy2 +a))

Jpp

x(Ij = Lp)Gp = 1ip) G — LD, (54
hwk 7Tk]

Ty SIN ——. 55
ppsmN (55)

TV —
PP 4NE;

We assume that the quasiparticle can reside on any island with
equal probability, and can tunnel to any of the two neighboring
islands. Then, the intrinsic quality factor is determined by

_ 1) ha)k
YT AN

instead of Eq. (41). As seen from Table I1I, this rate is very low.
However, along chain should contain an extensive number Ny,
of quasiparticles. As long as Ny, < N, they can be treated
independently, and their effect is additive, so I'y should be
multiplied by Ng,. Using the parameters from Table III, we
obtain Qjp &~ 1.3 x 107/ Ngp, which gives Qjp ~ 3 x 10° for
Ngp = 50 (one quasiparticle per four junctions). This value
is rather high, so the quasiparticle-related dissipation will be
important only if not masked by other mechanisms. Still, such
high quality factors, varying from 10° at low power to 107 at
high power, have been reported for superconducting resonators
[24], and quality factors larger than 10° have been obtained in
superconducting qubits, both comprising one or two junctions
(transmon [12,38]) or about 100 junctions (fluxonium [42]).
The above calculation assumed that all junctions in the
chain have the same parameters. Strictly speaking, this is
not the case; errors in the fabrication process may introduce
spatial variations in the junction parameters with the relative
magnitude o, typically, a few percent [43]. The most dramatic
effect of disorder is localization of the normal modes on a

Ty (56)
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certain length scale £. If N > £, the above results are no
longer valid. The localization length has been calculated in
Ref. [44]; for low-frequency modes, & = (8/02)(7rk/N)’2
is always larger than N. In this case, the disorder produces
small corrections to mode frequencies and wave functions [44],
which can be neglected here.

VII. QUASIPARTICLE RELAXATION
BY PHONON EMISSION

In the above calculations, we neglected the effect of
the quasiparticle energy relaxation by phonon emission. To
check the validity of this assumption, let us estimate the
corresponding rate. For a quasiparticle with the energy much
higher than the phonon temperature, the rate of acoustic
phonon emission was calculated in Ref. [31]:

116z
Tn(€)  315¢(5) Dpv2A

Here, ¢ (x) is the Riemann zeta function. We also introduced the
effective coupling strength X, which controls energy exchange
between electrons and phonons for the material in the normal
state: the power per unit volume transferred from electrons
and phonons which are kept at temperatures 7. and Tpp,
respectively, is given by Z(7) — Tpsh) [45]. The coefficient
Y can be represented in terms of the microscopic material
parameters as

(57)

_6¢(5) Dp E?

z 7 e
h vE pov;

(58)
where E is the deformation potential, vr and vy are the Fermi
velocity and the speed of sound, py is the mass density of
the material, Dr is the density of states at the Fermi level
for the material in the normal state, taken per unit volume
and for both spin projections. The coefficient ¥ can also be
measured experimentally (see Ref. [46] for a review). Using
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the parameters of aluminum, we estimate the phonon emission
rate at energy € = iw, for a single junction or € = /iw; for
a Josephson junction chain (Tables II and III). In the chain,
the phonon emission rate is smaller than the quasiparticle
tunneling rate, but the inequality is not very strong, and for
the single junction the two rates are comparable. Thus, a more
detailed study of the competition between the two relaxation
mechanisms is desirable. Such a study is beyond the scope of
this paper and will be the subject of a future publication [22].

VIII. CONCLUSIONS

To conclude, we have studied intrinsic dissipation due to
quasiparticle tunneling in a superconducting artificial atom,
represented by a single Josephson junction or a Josephson
junction chain. The artificial atom is assumed to contain
exactly one residual quasiparticle and is capacitively coupled
to a coherently driven transmission line. In contrast to
previous studies of quasiparticle-induced dissipation, we take
into account heating of the quasiparticle by the drive. For
simplicity, we assume that quasiparticle cooling by acoustic
phonon emission is inefficient and can be neglected, so
that the quasiparticle state is determined by the coupling
to the superconducting degrees of freedom. We show that
the corresponding intrinsic quality factor, as measured in
a transmission experiment, increases with the drive power.
This happens because the quasiparticle density of states
decreases with the quasiparticle energy, so at stronger drive
the quasiparticle tunneling is slower.
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