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Controlling quasiparticle dynamics can improve the performance of superconducting devices. For
example, it has been demonstrated effective in increasing the lifetime and stability of superconducting
qubits. Here we study how to optimize the placement of normal-metal traps in transmon-type qubits. When
the trap size increases beyond a certain characteristic length, the details of the geometry and trap position,
and even the number of traps, become important. We discuss for some experimentally relevant examples
how to shorten the decay time of the excess quasiparticle density. Moreover, we show that a trap in the
vicinity of a Josephson junction can significantly reduce the steady-state quasiparticle density near that
junction, thus, suppressing the quasiparticle-induced relaxation rate of the qubit. Such a trap also reduces
the impact of fluctuations in the generation rate of quasiparticles, rendering the qubit more stable.
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I. INTRODUCTION

For a successful execution of quantum gates, the
participating qubits must have coherence times exceeding
the gate operation time. Moreover, the longer the coherence
time, the less resources are needed for the implementation
of error correction. Thus, it is important to understand and
control decoherence mechanisms. Over the past several
years, it has been firmly established both theoretically [1–3]
and experimentally [4–8] that quasiparticles are detrimental
to superconducting qubits based on Josephson junctions.
For example, tunneling of quasiparticles through a trans-
mon junction leads to a relaxation rate proportional to their
density. At the low temperatures the qubits are operated,
the number of quasiparticles in typical devices should be
negligible in thermal equilibrium; however, the measured
quasiparticle density is several orders of magnitude larger
than expected, indicating that quasiparticle generation
mechanisms of unknown origin are maintaining a large
nonequilibrium quasiparticle population. While, in general,
it is not possible to control the poorly understood gen-
eration processes, trapping quasiparticles away from the
junctions offers a way to limit their unwanted effects. In
this paper, we build on a recently developed model [9]
for trapping by normal-metal islands to explore ways to
optimize the trap’s performance.
A number of approaches to trap quasiparticles have been

explored, from gap engineering [10,11] to trapping by
vortices [12–15] and normal-metal islands [16–19]. In all
cases, trapping is made possible by the energy relaxation of
excitations inside the trap, since an excitation with energy
below the gap Δ of the device’s superconductor S cannot
return to S. For normal-metal traps in tunnel contact with S,
the interplay between tunneling and relaxation was studied
both theoretically and experimentally in Ref. [9], with the

measurements indicating that relaxation is the bottleneck
limiting the trapping rate. The considerations in Ref. [9]
were mostly limited to the decay dynamics of excess
quasiparticles in a model of a pointlike trap placed in a
(quasi-) one-dimensional wire; in contrast, here we exam-
ine finite-size traps in realistic qubit geometries. We focus
on a qubit design, the coplanar gap capacitor transmon of
Ref. [14], whose coherence was shown to be limited by
quasiparticles. Similarly, the relaxation time of a fluxonium
biased close to (but not at) the half flux quantum [8] and
that of a flux qubit [20] were found to be limited by
quasiparticles. In other experiments with transmons (in a
different design with large pads rather than a gap capacitor
plus small pads), quasiparticles were not the limiting factor,
but there was evidence that they will become relevant if the
coherence time is to be increased by another order of
magnitude [7]. In addition to this kind of qubit, quasipar-
ticles are detrimental to both the so-called Andreev-level
qubit [21,22] and potentially to future devices based on
Majorana states [23]. In both cases, coherence is destroyed
by a single quasiparticle changing the parity of the state.
Quasiparticles are also a source of errors in charge pumps
comprising superconducting elements, which hamper their
use in metrological applications; indeed, traps have been
used to increase the pump accuracy [24]. Therefore, the
analysis presented here for a particular case can potentially
indicate the way for engineering better trap configurations
in a variety of systems, since it is based on a phenomeno-
logical diffusion equation which is expected to hold quite
generally.
In this paper, we show that use of quasi-1D geometries

facilitates trapping with small traps and that their positions
can be optimized. We consider three ways in which normal-
metal traps may improve qubit performance. First, we note
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that events which generate a large number of quasiparticles
render the qubit inoperable so long as the excess quasi-
particles are not eliminated. Here we find the parameters
and placement of traps that enhance the relaxation rate of
the excess density. Second, in addition to the dynamics of
the excess density, we study the quasiparticles’ steady-state
density in the presence of a generic generation mechanism
with a rate determined by experiments [14,25]. We find that
a trap placed near a junction can suppress the quasiparticle
density at that junction, potentially leading to a longer T1

relaxation time for the qubit. Third, we consider the effect
of fluctuations in the generation rate: they lead to the
fluctuation in the quasiparticle density near the junction
and, associated with it, to variations of a qubit T1 [20,25].
Placing a trap up to a certain distance from the junction can
reduce the density fluctuations and, hence, make the qubit
more stable.
The paper is organized as follows: In Sec. II, we

summarize the model of Ref. [9] to establish our notation
and for the paper to be self-contained. In Sec. III, we
consider a realistic qubit geometry, namely, the coplanar
gap capacitor transmon of Refs. [9,14]. We give analytical
arguments for trap configurations leading to faster relax-
ation rates of the excess density [see Eq. (10) for the
single-trap case and Eqs. (18) and (19) for the multitrap
one] and complement those with numerical calculations
whose outcomes are summarized in Figs. 2–4. In Sec. IV,
we turn our attention to the steady-state density at the
junction and its fluctuations. Both can be suppressed by
appropriately placed traps, but while the steady-state
density always increases monotonically with trap-junction
distance [Eq. (25)], we find for a strong trap a non-
monotonic behavior of fluctuations [Eq. (39)] and, hence,
an optimal trap position. We summarize our findings in
Sec. V. A number of appendixes complement the main text:
In Appendix A, we compare trapping by normal-metal
traps with that due to vortices. In Appendix B, we present
some mathematical details for the case of a single, finite-
size trap, and Appendix C addresses the question of the
experimental observability of the slowest decay rate of the
excess density. Appendixes D and E contain details about
the mapping of a realistic qubit design into a 1D wire, and
Appendix F considers traps in the Xmon qubit geometry.

II. THE EFFECTIVE TRAPPING RATE MODEL

Superconducting qubits are generically fabricated
by depositing thin superconducting films over an insulat-
ing substrate; we, therefore, consider quasiparticles as
diffusing in a two-dimensional region. Normal-metal (N)
traps are also thin films deposited on top of the super-
conductor S, and we assume that an insulating barrier of
low transparency is present between N and S. Then, the
dynamics of the (normalized) quasiparticle density in the
superconductor xQP is captured by a generalized diffusion
equation

_xQP ¼ DQP∇⃗
2
xQP −Aðx⃗ÞΓeffxQP − sbxQP þ g ð1Þ

(see Ref. [9] for theoretical justification and experimental
validation of this effective model). The quasiparticle
density xQP is normalized by the Cooper pair density
ν0Δ and is, therefore, a dimensionless quantity. It is a
function of time t (the dot denotes the time derivative) and
position x⃗ in the x-y plane (here, ν0 is the density of states
at the Fermi level). The phenomenological diffusion
constant DQP is proportional to the normal-state diffusion
constant for electrons in the superconductor DS. The term
proportional to the effective trapping rate Γeff accounts for
trapping of quasiparticles by the normal metal and is
discussed in more detail below. The functionAðx⃗Þ is unity
when x⃗ is within the S-N contact region and zero
otherwise. In other words, this function localizes the trap
to only a part of the whole device, rendering the system
inhomogeneous, whereas the other coefficients in Eq. (1)
are constant throughout the superconductor. The rate g
describes the generation of quasiparticles. Finally, the
possibility that other mechanisms can trap quasiparticles
in the bulk of the superconductor is captured by the term
proportional to the background trapping rate sb; we set
sb ¼ 0 in this paper, as its effect is negligible [26].
The effective trapping rate Γeff incorporates the interplay

between tunneling from S to N at rate Γtr, relaxation in N
with rate Γr, and escape from N to S with rate Γesc. For a
quasiparticle distribution at an (effective) temperature
T ≪ Δ, we can distinguish two limiting cases. For fast
relaxation Γr ≫ ðΔ=TÞ1=2Γesc, the effective trapping rate
is determined by the S to N tunneling rate, i.e., Γeff ≈ Γtr:
since quasiparticles lose energy quickly upon entering
into N, they cannot tunnel back to S. On the other hand,
for slow relaxation Γr ≪ ðΔ=TÞ1=2Γesc, we have Γeff ≈

ð2T=πΔÞ1=2ΓtrΓr=Γesc. Typically, Γesc ≈ Γtr; hence, the
effective rate is limited by the relaxation process and
becomes temperature dependent. The experimental
results from Ref. [9] indicate that the trapping is
relaxation limited; this implies that making the S-N
contact more transparent will not affect the trapping rate
Γeff . This analysis holds for a contact in the tunneling
regime so that the proximity effect can be neglected. For
good contact between S and N, the gap will be sup-
pressed, and the trapping will be more appropriately
described as being due to gap engineering; this regime is
outside the scope of the present work.
As we discuss in the Introduction, we are interested in

three quantities which are affected by the trap: the relax-
ation rate of the excess density (i.e., the density which is in
addition to the steady-state one), the steady-state density at
the junction, and its fluctuations. Focusing on the dynamics
of the excess density, we note that the diffusion equation (1)
can be solved in terms of eigenmodes, each with an
eigenvalue corresponding to the decay rate of that mode.
In general, at long times, the slowest mode determines the
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exponential decay of the excess density, which, therefore,
can be written as

xQPðt; x⃗Þ≃ x0QPðx⃗Þe−t=τw ; ð2Þ

where the decay rate τ−1w is the eigenvalue with the smallest
absolute value, and x0QP its corresponding eigenfunction.
Simple estimates for τw can be found in limiting cases: a
weak trap will not significantly affect the density, which
can then be taken uniform. After integrating Eq. (1) over
the device, we find the decay rate

1

τw
≃ Γeff

Atr

Adev
; ð3Þ

where Atr and Adev are the trap and device area, respec-
tively. In the opposite regime of a strong trap, the excess
density will be fully suppressed at the trap, and its decay
rate will be determined by the inverse of the diffusion time
between the trap and the region of the device farthest from
it. Denoting with L the distance of this region from the trap,
we have, up to numerical factors of order unity,

τw ≃ L2=DQP: ð4Þ

Let us consider a device with a large aspect ratio so that
Adev ¼ LdevW with width W much smaller than length
Ldev, and a trap of length d and width of the order of W.
Then, assuming a weak trap, using Eq. (3) we find τ−1w ∼

Γeffd=Ldev. On the other hand, if the trap is strong and Ldev

is much larger than d, Eq. (4) gives τ−1w ∼DQP=L
2

dev. The
two rates are comparable when [9]

d ∼ l0 ≡
π

2

λ2tr

Ldev
; ð5Þ

with the “trapping length”

λtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DQP=Γeff

q

ð6Þ

giving the length scale over which the density under the
trap decays. The crossover from weak (d ≪ l0) to strong
(d ≫ l0) trap was experimentally demonstrated in Ref. [9].
We point out that the diffusion-limited strong-trap

regime can be reached for traps with dimensions smaller
than λtr only in the (quasi-) one-dimensional geometry.
Indeed, let us consider a 2D superconducting film of total
area L2

dev and a trap of area d2, with d ≪ Ldev. In the weak
regime, the decay rate is τ−1w ≈ Γeffd

2=L2

dev. Comparing this
to the diffusion rate of approximately DQP=L

2

dev, we find
that the crossover from the weak to strong trap occurs for
the trap size d ∼ λtr. This means that effectively zero-
dimensional traps (d ≪ λtr) may be strong in 1D, but they
are always weak in 2D. Therefore, it can be advantageous

to use quasi-1D devices with small traps, since in 2D
devices, the traps must be large to be effective, and large
traps could potentially lead to unwanted Ohmic losses
within the normal metal or dissipation at the S-N contact.
In this paper, we focus on the 1D geometry in order to
examine the optimal placement of small traps d < λtr.
Estimation of the trap-induced losses is outside the scope of
this work and will be presented elsewhere [27]. However,
we note here that the devices measured in Ref. [9] with the
longest traps d > λtr had T1 times shorter than those with
smaller traps d < λtr, giving some evidence for the possible
detrimental effect of large traps.

III. ENHANCING THE DECAY RATE

OF THE DENSITY

In this section, we analyze how to optimally place traps
of a given size so that the slowest mode of the quasiparticle
density decays as fast as possible. As a concrete example,
we take the coplanar gap capacitor transmon and study
traps placed in the long wire connecting the gap capacitor
to the antenna pads, both via analytical and numerical
approaches. For actual estimates, we use the parameters
measured in Refs. [9,14], namely, Γeff ¼2.42×105Hz and
DQP¼18 cm2=s, which, using Eq. (6), give λtr ≃ 86.2 μm.
Since we are interested in the decay of the excess density,
we can set g ¼ 0; the effect of a trap on the steady-state
density due to finite g is the focus of Sec. IV. In
Appendix A, we compare trapping by vortices [14] to
normal-metal traps.
As we discuss at the end of Sec. III A, considering only

the slowest mode for the optimization may not be sufficient
when addressing the extreme case of a single, very large
trap. However, as we have already pointed out, in a quasi-
1D geometry, short traps can be strong—that is, effective at
suppressing the excess quasiparticle density. In this case,
the slowest mode, in general, still suffices to characterize
the long-time quasiparticle decay. The short-trap regime is,
in particular, important for the multiple-trap configurations
considered in Sec. III B: these configurations combine a
fast decay of the quasiparticle density with low electro-
magnetic losses and are, thus, preferable.

A. Optimization for a single trap

Let us consider a single trap placed in the antenna wire of
length L; see Fig. 1 (the device being symmetric, there are
two traps in total). We start for simplicity with a short trap
of length d ≪ λtr and neglect the gap capacitor and antenna
pads. We then show how to map the full device to this
simpler configuration and compare our estimates with
numerical results.
For a short trap in a wire, the diffusion equation (1) can

be written in the form (cf. Appendix B)

_xQP ¼ DQP∇⃗
2
xQP − γeffδðy − L1ÞxQP: ð7Þ

OPTIMAL CONFIGURATIONS FOR NORMAL-METAL … PHYS. REV. APPLIED 8, 064028 (2017)

064028-3



The trap is at position y ¼ L1 and γeff ¼ dΓeff . Consider
for simplicity the case γeff → ∞, such that quasiparticles
are trapped immediately once they reach the trap. As a
consequence, xQPðL1Þ ¼ 0, and the density on the left and
right sides of the trap decays with the rates τ−1w ¼
π2DQP=4L

2
1

and τ−1w ¼ π2DQP=4ðL − L1Þ2, respectively.
If the trap is at the center of the wire L1 ¼ L=2, the
density decays equally fast on both sides, and the decay rate
of the slowest mode is 4 times faster as compared to placing
the trap at the beginning or end of the wire. In other words,
the central position is the optimal one for the trap to
evacuate quasiparticles as quickly as possible.
At finite γeff , the left and right modes are coupled, but the

coupling is small provided that the trap is strong d ≫ l0.
The coupling lifts the mode degeneracy at L1 ¼ L=2 but
does not change the above conclusion on the optimal
position. We note, however, that if quasiparticles are
injected and detected locally (as, e.g., in Ref. [9]), one
may not necessarily observe the global slowest decay rate
for strong traps; see Appendix C for more details.
In the simple example above, we show that the optimal

trap position (for which the decay rate of the slowest mode
is the fastest) is such that the diffusion times in both sides of
the trap are equal. We can extend this finding to a more
realistic qubit geometry [9], which includes the coplanar
gap capacitor close to the Josephson junction and the
antenna pad at the far end of the wire; see Fig. 1. The
capacitor “wings” of length Lc and the square pad with side
Lpad can be accounted for by adding some effective lengths

to the antenna wire. The effective lengths Leff
c ðkÞ and

Leff
padðkÞ (for capacitor and pad, respectively), in general,

depend on the wave vector k; see Appendixes D and E. If
these effective lengths are much smaller than the wire
length L, we find that for the slow modes, the dependence
on k drops out: Leff

pad ≈ L2

pad=W and Leff
c ≈ 2ðWc=WÞLc,

withW andWc the widths of the wire and capacitor wings,
respectively. These effective lengths may simply be added
to the lengths to the left and right of the trap to find the
decay rates

1

τw
¼ π2DQP

4ðL − L1 þ L2

pad=W − d=2Þ2 ð8Þ

for the right mode and

1

τw
¼ π2DQP

4ðL1 þ 2
Wc

W
Lc − d=2Þ2

ð9Þ

for the left mode. We account for the finite size of the trap
by subtracting the d=2 terms in the denominators, and L1

denotes the trap center. Thus, the optimal trap position is (in
the strong-trap limit)

Lopt ¼
L

2
þ
Leff
pad − Leff

c

2
: ð10Þ

The optimal position is closer to the pad (gap capacitor) if
the effective length of the pad (capacitor) is larger.
We can check the validity of the above considerations for

strong traps and extend our consideration to weaker (i.e.,
smaller) traps by more accurately modeling the diffusion
in the device as done in the Supplemental Material of
Ref. [14] (see, also, Appendix A). Namely, the density in
the parts not covered by the trap is written in the form

xQPðt; yÞ ¼ e−t=τw ½α cos kyþ β sin ky� ð11Þ

with 1=τw ¼ DQPk
2 (except for the pad, where the density

is assumed uniform), while under the trap, we have

xQPðt; yÞ ¼ e−t=τw ½α cosh y=λþ β sinh y=λ�: ð12Þ

Imposing continuity of xQP and current conservation, we
find

z2 þ b2 ¼ ðL=λtrÞ2; ð13Þ

z

b
½azþ tanðzξRÞ�

�

1−hðz;ξLÞ tanh
�

b
d

L

��

− ½1−aztanðzξRÞ�
�

tanh

�

b
d

L

�

−hðz;ξLÞ
�

¼0; ð14Þ

with z ¼ kL, b ¼ L=λ, a ¼ L2

pad=ðLWÞ, and

FIG. 1. Top: Sketch of the transmon qubit studied here, based
on the experiments of Ref. [9]. Light blue: superconducting
material. Red: Regions of the superconductor covered by normal
metal. Cross: Position of the Josephson junction. Except for the
junction region, the sketch is to scale. Bottom: Right half of the
device with the relevant lengths defined. A trap of length d is
placed on the antenna wire (length L, width W) at distance L1

from the gap capacitor (dimensions Lc andWc). The antenna pad
is a square of side Lpad.
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hðz; ξLÞ ¼
z

b

tan ðzξLÞ þ tan ðz l
L
Þ þ 2

Wc

W
tan ðz Lc

L
Þ

1 − tan ðzξLÞ½tan ðz l
L
Þ þ 2

Wc

W
tan ðz Lc

L
Þ�
: ð15Þ

We also define the (normalized) length of the wire to the left
(right) of the trap by

ξL ¼ ðL1 − d=2Þ=L; ð16Þ

ξR ¼ ðL − L1 − d=2Þ=L: ð17Þ

Solving Eqs. (13) and (14) for z and b, one can find
the density decay rate 1=τw ¼ DQPz

2=L2. For a long qubit
with L ≫ λtr, we find for the slow modes b ≈ L=λtr ≫ 1

and z ∼ 1. We note that the assumption of uniform
density in the pad requires 1=τw ¼DQPz

2=L2 ≪DQP=L
2

pad.

Since for experimentally relevant parameters we have
L2

pad=L
2 ∼ 10−2, the assumption is valid for slow modes

even when z≳ 1.
In Fig. 2, we show a density plot of the decay rate

1=τw as a function of the distance L1 between the gap
capacitor and trap center and of the normalized trap size
d=l0 calculated using typical experimental parameters as
detailed in the caption. For a strong trap d ≫ l0, as we
discuss in Sec. II, we find that the decay rate is sensitive to
the trap position. The optimum position is shifted with
respect to the middle of the wire (dash-dotted line in Fig. 2),
in agreement with the prediction of Eq. (10). Indeed, for the
parameters in Fig. 2, we find Leff

pad ¼ L2

pad=W ≈ 533 μm and

Leff
c ¼ 2ðWc=WÞLc ≈ 667 μm, and the optimal position is

closer to the gap capacitor.
When the trap size is d ≲ l0, the trap position has only a

minor effect on the trapping rate. This is more clearly seen
in Fig. 3 (bottom solid curve). For longer traps, we compare
the decay from the numerical solution to Eqs. (13) and (14)
with Eqs. (8) and (9). When the trap is strong but still short
compared to the wire (middle solid), Eqs. (8) and (9)
(dashed) provide a good approximation to the numerical
results (in fact, one can expect the numerically calculated
rate to be slower than the analytical prediction, since the
numerics account for the finite trapping length which
allows for finite density under the trap as well as for the
bridge of length l joining the junction to the gap capacitor).
For very long traps (upper solid line), the approximation
that the effective lengths are small compared to the
(uncovered part of the) wire fails, and the calculated rate
is faster. This is qualitatively in agreement with the fact that
as the mode wavelength increases, the effective lengths
decrease; see Eqs. (D4) and (E2) (for the gap capacitor, this
is true so long as 2Wc=W > 1).
Our focus so far is on speeding up the decay rate of the

slowest mode without taking into consideration the ampli-
tude of the mode at the junction. This approach is correct
for weak traps d≲ l0, since the amplitude of the mode is
approximately the same on both sides of the trap. For strong
but small traps l0 ≪ d ≲ λtr, the amplitude on one side
of the trap is algebraically suppressed by a factor of order
d=l0 compared to the amplitude on the other side (see
Appendix C), while for long traps d ≫ λtr, the suppression
is exponential in d=λtr (see Appendix B). In the latter case,
it is clearly advantageous to place the trap close to the
junction: the mode with large amplitude between the
junction and trap will decay quickly, while the slow mode
with large amplitude on the other side of the trap will decay

FIG. 2. Trapping rate 1=τw as a function of the trap position L1

(in units of L) and normalized trap size d=l0; see Fig. 1 for the
device geometry. The device parameters are L¼1mm, l¼60 μm,
W ¼ 12 μm, Lc ¼ 200 μm, Wc ¼ 20 μm, Lpad ¼ 80 μm. We
use λtr ¼ 86.2 μm for the trapping length, so l0 ¼ πλ2tr=2L≃
11.7 μm. The white areas are regions in which the trap center
cannot be pushed closer to or farther away from the gap capacitor
due to the finite trap size.

FIG. 3. Solid lines: Trapping rate 1=τw as a function of the trap
position L1 measured in units of L for (top to bottom) d=l0 ¼ 40,
10, 1. Other parameters are specified in the caption to Fig. 2, and
the device geometry is shown in Fig. 1. The dashed lines are the
estimates provided by Eqs. (8) and (9) for d=l0 ¼ 40, 10.
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slowly, but it will be exponentially suppressed at the
junction. However, as we point out at the end of Sec. II,
long traps can be too lossy. This motivates us to further
study how to obtain the fastest possible decay using only
small traps.

B. Multiple traps

We now generalize the considerations of the previous
section to the case of multiple traps (in each half of the
qubit). For a weak trap, the effective trapping rate is
proportional to the trap size [Eq. (3)] but independent of
position; therefore, no change in the density decay rate can
be expected by dividing a weak trap into smaller ones, since
the total size is unchanged. The strong-trap regime is
qualitatively different in this regard. Let us consider Ntr

strong traps in a wire of length L; the traps separate the wire
into Ntr þ 1 compartments. The optimal trap placement is
obtained when the diffusion time is the same for each
compartment, meaning that the traps have to be placed at
positions Ln ¼ ð2n − 1ÞL=2Ntr with n ¼ 1;…; Ntr, and
the resulting decay rate is

τ−1w ðNtrÞ ¼ N2
trDQP

π2

L2
: ð18Þ

The rate increases quadratically with the number of traps,
so splitting a single strong trap into smaller pieces can
highly increase the decay rate. However, when keeping the
total area of the traps constant, there is a limitation to this
improvement. Indeed, the length of each trap decreases as
d=Ntr, and the “device length” of each compartment is of
order L=2Ntr. Using these quantities in Eq. (5), we find that
the traps cross over to the weak regime for

N
opt
tr ∼

ffiffiffiffiffiffi

d

2l0

s

: ð19Þ

Here, l0 is defined by the right-hand side of Eq. (5)
with Ldev ¼ L. Increasing the trap number beyond N

opt
tr

does not further improve the decay rate, which is,
thus, limited by Eq. (3). In other words, to obtain that
maximum decay rate for given total length d, at least
N

opt
tr traps should be placed evenly spaced over the

device. Such a configuration can also reduce the trap-
induced losses, since they depend on the trap position
and size [27].
Let us now show in a concrete example that

multiple traps can indeed increase the decay rate as
predicted by Eq. (18). We consider again the transmon
device depicted in Fig. 1, but we now assume that
two traps are placed on the central wire, with distances
L1 and L2 between the gap capacitor and the traps
centers. Accounting for the second trap, we generalize
Eq. (14) to

z

b

�

1−hðz;ξLÞ tanh
�

b
d1

L

���

z

b
tanðzχÞ− tanh

�

b
d2

L

�

þgðz;ξRÞ
�

1−
z

b
tanðzχÞ tanh

�

b
d2
L

���

−

�

tanh

�

b
d1

L

�

−hðz;ξLÞ
��

tanh

�

b
d2

L

�

tanðzχÞ

þ z

b
−gðz;ξRÞ

�

tanðzχÞþ z

b
tanh

�

b
d2

L

���

¼0; ð20Þ

where taking L1 < L2,

ξL ¼ ðL1 − d1=2Þ=L; ð21Þ

ξR ¼ðL − L2 − d2=2Þ=L; ð22Þ

χ ¼ðL2 − d2=2 − L1 − d1=2Þ=L; ð23Þ

the function hðz; ξLÞ is defined in Eq. (15), and

gðz; ξRÞ ¼
z

b

azþ tanðzξRÞ
1 − az tanðzξRÞ

: ð24Þ

We consider for simplicity the case of equal traps,
d1 ¼ d2 ≡ d=2 with d ¼ 20l0 ≃ 233 μm the total length
of the normal metal. We show in Fig. 4 the decay rate as a
function of L1 and L2 for the same parameters as in Fig. 2.
We find that the decay rate of the slowest mode is highest
when placing the traps far away from each other, one trap
touching the gap capacitor and the other being close to the
pad. This is in qualitative agreement with our expectations:
consider again the gap capacitor and the pad as extra
lengths added to the left and right of the central wire,
respectively. This leads to a wire of effective total length
Ltot ¼ Leff

c þ Lþ Leff
pad ≃ 2200 μm. In such a wire, the

optimal positions are L1 ¼ Ltot=4≃ 550 μm and L2 ¼
3Ltot=4≃ 1650 μm. The value of L1 indicates an optimal
position inside the gap capacitor, but since we allow for the
traps to be placed in the central wire only, this optimal
placement is not possible. The value of L2 corresponds to a
position slightly away from the pad, in agreement with the
results in Fig. 4. Finally, going from the optimally placed
single trap to the optimal two-trap configuration, the decay
rate increases by a factor of approximately 3.4. This factor
does not reach the theoretical maximum of 4 predicted
by Eq. (18); the discrepancy can be attributed both to the
nonoptimal placement of the first trap mentioned above as
well as to finite-size effects, as in the single-trap case.
However, the calculated improvement confirms that the
decay rate can be significantly increased by optimizing the
trap number and position.
It is instructive to compare our results for the two-trap

case with the fast decay of the mode to the left of the single
trap. Using Eq. (9), we estimate the decay rate of this mode
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to be 1=τw ≃ 14.7 ms−1, slightly slower than the maximum
rate shown in Fig. 4. In both cases, we do not allow the trap
to enter the gap capacitor; this constraint can be important
in limiting trap-related losses, as the gap capacitor is the
region with the highest electric field. Using two traps, we
place only half the total normal material near the high-field
region, while obtaining a slightly faster decay than with a
single, large trap. For the considered example, further
increase in the decay rate can be obtained by further
splitting the traps. Indeed, a more accurate estimate for
the length l0 can be obtained by using Ldev ¼ Ltot − d≃

1967 μm in Eq. (5), giving l0 ≈ 5.9 μm. Then, the

“optimal” trap number is N
opt
tr ≃

ffiffiffiffiffiffiffiffiffiffiffi

d=2l0
p

∼ 4, requiring
one trap to be placed on the pad, two on the antenna wire,
and one on the gap capacitor (this placement is calculated
using the “effective wire” length of the gap capacitor, so
that in practice, one should symmetrically place one trap on
each of the two “wings” of the gap capacitor). As we

mention above, placement on the gap capacitor can be
detrimental, but with the optimal trap number, only one
quarter of the normal metal will be in the gap capacitor, and
the resulting losses will, therefore, be smaller than those
due to a single large trap on the gap capacitor. Therefore, it
is potentially beneficial to have multiple smaller traps in
comparison with a single large trap. Such considerations
are also dependent on the device design. In Appendix F,
we briefly consider a different geometry for the qubit, the
Xmon of Ref. [28]. The central X-shaped part of the device
is small, and, unfortunately, this implies that no large gain
in the decay rate can be obtained using multiple traps, so
alternative approaches are desirable in this case. In the next
section, we turn our attention to the effect of traps on the
steady-state density.

IV. SUPPRESSION OF STEADY-STATE

DENSITY AND ITS FLUCTUATIONS

In the preceding section, we deal with the question of
how fast quasiparticles reach their steady state if there is a
deviation from said steady-state density. In this section, we
point out that traps also affect the shape of the steady-state
density. In particular, our aims are to minimize the steady-
state density at the junction, which directly affects the T1

time of qubits, as well as to stabilize the density value
against fluctuations in their generation rate which lead to
temporal variations in the qubit lifetime. In our model, the
steady-state density is nonzero due to a finite generation
rate g in Eq. (1). As we argue in Sec. II, in the presence of a
weak trap, the quasiparticle density is uniform, and in the
steady state, it takes the value xsQP ¼ gτw with τw of Eq. (3).
As we now show, going beyond the weak limit the
geometry affects the spatial profile of the density.
For a concrete example, we consider the same geometry

as in Sec. III A—that is, a single trap on the wire connecting
the gap capacitor and pad; see Fig. 1. The solution for the
profile of the steady-state density in each 1D segment
outside the trap is given by parabolas of the general form
xsQP ¼ −y2g=2DQP þ αyþ β, while under the trap, we

have xsQP¼ ~αcoshðy=λtrÞþ ~βsinhðy=λtrÞþg=Γeff . The pad
density is again assumed constant. The parameters α, β in

each segment, as well as ~α, ~β are found by imposing
appropriate boundary conditions (i.e., continuity and cur-
rent conservation). We finally arrive at the following
expression for the steady-state density xJQP at the junction:

xJQP ¼
g

Γeff

�

1þ 1

sinhðd=λtrÞ
AR

Wλtr
þ coth ðd=λtrÞ

AL

Wλtr

�

þ g

DQP

�ðL1 þ l − d=2Þ2
2

þ AcðL1 − d=2Þ
W

�

; ð25Þ

where AR ¼ W½L − L1 − d=2� þ L2

pad and AL ¼ W½L1 þ
l − d=2� þ Ac are the uncovered areas to the right and left

FIG. 4. (a) Device with two traps (dark red) in each half of the
qubit. Distances L1 and L2 are measured from the gap capacitor
to the center of each trap; cf. Fig. 1. (b) Trapping rate 1=τw as a
function L1 and L2. Here, the two traps are identical
d1 ¼ d2 ¼ 10l0, which makes the plot symmetric under the
exchange L1 ↔ L2. The parameters used are specified in the
caption to Fig. 2. Similar to that figure, the white areas
correspond to forbidden regions due to the finite traps’ sizes.
A comparison with Fig. 2 reveals that splitting a trap with length
d ¼ 20l0 into two identical ones can boost the trapping rate up to
a factor larger than 3.
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of the trap, respectively, and Ac ¼ 2WcLc is the gap
capacitor area.
In the small-trap limit d ≪ λtr, we can rewrite Eq. (25) in

the form

xJQP ≃ gðτw þ tDÞ ð26Þ

with τw defined in Eq. (3), while tD ¼ ½ðL1 þ l − d=2Þ2=
2þ AcðL1 − d=2Þ=W�=DQP represents the diffusion time
between the junction and trap (with the second term in
square brackets taking into account the presence of the gap
capacitor). Similar to the discussion in Sec. II, we can
distinguish between an effectively weak (τw ≫ tD) and
strong trap (τw ≪ tD), with the trap becoming strong as
its length d increases above the position-dependent length
scale l1 ∼ λ2tr=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

DQPtD
p

. Note that l1 decreases with the
distance L1 between the gap capacitor and trap and is always
larger than l0 of Eq. (5). Therefore, a trap that is weak in the
sense of d being smaller than l0 is weak at any position L1,
and the value of xJQP is weakly dependent on the trap
placement. On the other hand, a strong trap with d > l0
effectively becomes weak as L1 decreases when τw ¼ tD. At
positions L1 smaller than that given by this condition, xJQP
again becomes weakly dependent on trap placement. In other
words, the condition determines the maximal distance at
which the largest (up to numerical factor) suppression of xJQP
is achieved for a given trap size d.
For a long trap d ≫ λtr, we can still use Eq. (26) after the

identification

τw →
1

Γeff

�

1þ AL

Wλtr

�

: ð27Þ

With this substitution and for typical experimental param-
eters, we find again that the first term in Eq. (26) dominates
when the trap is close to the junction (despite being smaller
than the corresponding term for a short junction), while the
second one takes over as L1 increases. More generally, it
should be noted that in any regime, xJQP is a monotonically
increasing function of L1: as one can expect, the closer the
trap is to the junction, the more it suppresses the quasi-
particle density near that junction. This behavior is evident
in Fig. 5: the plot clearly shows that the density is
suppressed by placing the trap near the gap capacitor
and that long traps (d≳ λtr) are more effective. Values
as low as xQP ∼ 10−8 are predicted. For comparison, we
note that in devices with the geometry considered here but
without traps, we estimate xQP ∼ 10−6 [14]. On the other
hand, for transmons with larger pads (so that there are
always vortices that act as traps), we find xQP ∼ 10−7

[6,14]. Further suppression of the density can be achieved
by placing traps in the gap capacitor, since this effectively
reduces the uncovered area AL [cf. Eq. (27)] between the
trap and junction.

Based on the above consideration, we do not expect that
adding a second trap far from the junction significantly
affects the steady-state density xJQP (we can confirm this by
direct calculation). Therefore, the results of the last two
sections suggest that having two traps, one close to the
junction and the other close to the pad, can both greatly
reduce the steady-state density at the junction and enhance
the decay rate of the excess density. Next, we show that traps
can also contribute to the temporal stability of the qubit.

A. Fluctuations in the generation rate

As discussed previously, the density at the junction and,
hence, the qubit relaxation rate, are proportional to the
generation rate g. Therefore, temporal variations in g can
cause changes in the measured T1 over time. Here, we
explore how traps can suppress these changes. For this
purpose, we include Gaussian fluctuations of g in Eq. (1) by
replacing g → gþ δĝðy; tÞ with

hδĝðy; tÞi ¼ 0; ð28Þ

hδĝðy; tÞδĝðy0; t0Þi ¼ γgδðy − y0Þ 1

2τm
e−ðjt−t

0j=τmÞ: ð29Þ

The parameter γg characterizes the fluctuation amplitude
and has the same units as γeff of Eq. (7), while h…i
averages over all realizations of δĝ. We assume that
fluctuations are spatially uncorrelated but allow for tem-
poral correlations with a finite memory time τm; we return
to this point in what follows. Note that under these
assumptions, the average density hxQPðyÞi is, in general,

FIG. 5. Quasiparticle density at the junction as a function of
trap location L1 (in units of L) and its normalized size d=λtr
calculated using g ¼ 10−4 Hz [14,25]. The normalization of the
size d differs from that of Fig. 2, but the parameters used for the
device are the same specified there.
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a function of the spatial coordinate due to the presence of
traps but not of time.
To provide a measure for the density fluctuations at the

junction position y ¼ 0, we consider the quantity

Δx2QPðt; t0Þ≡ hxQPð0; tÞxQPð0; t0Þi − hxQPð0Þi2: ð30Þ

This quantity can be expressed in terms of the eigenvalues
μk < 0 and eigenfunctions nkðyÞ of Eq. (1) (cf. Ref. [9] and
Appendix B). Indeed, the quasiparticle density with the
fluctuation term is

xQPðy; tÞ ¼ −

X

k

1

μk
nkðyÞgk

þ
X

k

Z

t

−∞

dt1e
μkðt−t1ÞnkðyÞδĝkðt1Þ; ð31Þ

with

δĝkðt1Þ ¼
Z

L

0

dy0

L
nkðy0Þδĝðy0; t1Þ ð32Þ

and the similar definition for gk. Substituting this expres-
sion into the definition Eq. (30) and averaging over the
fluctuations, we find

Δx2QPðt; t0Þ ¼
γg

2L

1

τm

X

k

Z

t

−∞

dt1

Z

t0

−∞

dt2e
μkðt−t1Þ

× eμkðt
0−t2Þe−ðjt1−t2j=τmÞn2kð0Þ: ð33Þ

The time integrals are conveniently computed by first
shifting the times t1 and t2 by t and t0, respectively, and
then changing variables in the two-dimensional integral
into a mean time t1 þ t2 and time difference t1 − t2. After
integration, we obtain

Δx2QPðt − t0Þ ¼ γg

2L

X

k

τme
−ðjt−t0j=τmÞ þ 1

μk
eμkjt−t

0j

τ2mμ
2

k − 1
n2kð0Þ;

ð34Þ

which depends only on the time difference.
Equation (34) shows that even in the absence of time

correlations for the fluctuations in the generation rate
τm ¼ 0, the fluctuations in the density are correlated due
to diffusion. In this case, the longest decay time is that of
the slowest mode 1=μ0 and is typically of the order of
milliseconds [9]. This time is shorter than the time it takes
to measure a qubit relaxation curve and, hence, estimate the
quasiparticle density. Therefore, only the regime in which
τm is much longer than 1=μ0 can have observable conse-
quences. Moreover, there is experimental evidence for
slow fluctuations in the number of quasiparticles in qubits
obtained by monitoring the quantum jumps between states

of a fluxonium (Ref. [25]) and by repeated measurements
over several hours of the relaxation time in a capacitively
shunted flux qubit (Ref. [20]). Therefore, in the remainder
of this section, we focus only on the regime of long
memory—that is, slow fluctuation in the generation rate. In
the limit τm ≫ 1=μ0, Eq. (34) simplifies to

Δx2QPðt − t0Þ≃ γg

2Lτm
e−ðjt−t

0j=τmÞ
X

k

1

μ2k
n2kð0Þ: ð35Þ

We now want to establish that a trap can indeed reduce the
fluctuations. To this end, we consider the simple case of the
junction in a quasi-1D wire extending for length L from
the junction and with a trap at distance L1 from the junction.
Initially, we take the trap to be small (length d ≪ λtr), and we
distinguish between a weak and strong trap; see Eq. (5). For
a weak trap d ≪ l0, the slow modes are weakly dependent
on the spatial coordinate. Moreover, for the slowest mode,
the decay rate is [cf. Eq. (3)]

μ0 ≈ −Γeff
d

L
; ð36Þ

while the higher modes are much faster, since μn>0 ≲

−DQP=L
2 and, thus, jμn>0j ≫ jμ0j. Using n0ð0Þ ≈ 1 and

neglecting the small contributions from the higher modes,
from Eq. (35) we find

Δx2QPðt − t0Þ ≈ γg

2Lτm
e−

jt−t0 j
τm

�

L

Γeffd

�

2

: ð37Þ

This expression shows that a stronger and longer trap more
effectively suppresses fluctuation, as can be expected.
In the case of a strong trap (d ≫ l0), the eigenmodes can

be split into two sets (cf. Sec. III A): there are left and right
modes, which are strongly suppressed to the right and to the
left of the trap, respectively (here we assume that the trap
position is sufficiently far from the central position; see
Appendix C). The left modes with large amplitude between
the junction and trap give small contributions to the density
fluctuations when the trap is close to the junction, and their
contributions grow with junction-trap distance. The right
modes, while being suppressed to the left of the trap, have
opposite behavior with distance, so they can dominate
when the trap is sufficiently close to the junction. Then,
we generically expect a nonmonotonic dependence of the
density fluctuations on trap-junction distance from the
competition between the modes to the left and right of
the trap.
Let us consider the decay rates for the left and right

modes, which we denote with μn;L1
and μn;L−L1

, respec-
tively, where we define

μn;l ≃ −DQP

�

π

2l

�

2

ð2nþ 1Þ2; n ¼ 0; 1;…: ð38Þ
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Keeping in Eq. (35) only the slowest mode for each set,
since the higher modes with n > 0 give a smaller con-
tribution to the sum, we find

Δx2QPðt − t0Þ ≈ γg

Lτm
e−½ðjt−t

0jÞ=τm� 1

μ2
0;L

×

��

L1

L

�

3

þ
�

l0
d

�

2 L − L1

L

�

; ð39Þ

where we use n2k;L1
ð0Þ≃ 2L=L1 and n2k;L−L1

ð0Þ≃
2ðl0=dÞ2½L=ðL − L1Þ�3 (here, we also assume d ≪ L1,
L − L1). The first term in square brackets originates from
the lowest mode confined between the junction and trap,
while the second term, due to the lowest mode located
on the other side of the trap, is suppressed by the small
factor ðl0=dÞ2. As a function of the trap position L1, in
agreement with the above considerations, we find that
Δx2QP has a minimum at L1 ¼ Ll0=d

ffiffiffi

3
p

, where the terms in

square brackets take the approximate value ðl0=dÞ2, and
Eq. (39) takes the same form of Eq. (37). In fact, those
terms rise significantly above this value only for
L1 > Lf ≡ Lðl0=dÞ2=3, indicating that for a strong trap,
a large suppression of fluctuations can be achieved if the
trap is not placed far beyond Lf. We note that this condition
is more stringent than the one discussed after Eq. (26)
τw ¼ tD, which for the simple wire considered here gives a

maximum distance of approximately 2L
ffiffiffiffiffiffiffiffiffiffiffiffi

l0=πd
p

; in other
words, maximum suppression of fluctuations ensures
maximum suppression of the steady-state density.
The above considerations for a strong but short trap can

be generalized to longer traps (d ≳ λtr, with d ≪ L) by
substituting l0=d → λtr=L sinhðd=λtrÞ; see Appendix B. In
both regimes (strong but short, and long trap), increasing
the trap length suppresses the fluctuations at the junction
but shrinks the region over which maximum suppression
can be achieved since Lf becomes smaller. This region is,
however, always small compared to the wire length
Lf ≪ L. Together with the monotonic dependence of the
average quasiparticle density on the distance obtained in
the first part of this section, our results show that placing a
trap close to the junction is effective in suppressing both the
average density and its fluctuations, potentially making the
qubit longer lived and more stable.

V. SUMMARY

In this paper, we study the effects of size and position of
normal-metal quasiparticle traps in superconducting qubits
with large aspect ratio so that quasiparticle diffusion can be
considered one dimensional. We focus on such a design
because, as we argue at the end of Sec. II, in a two-
dimensional setting, traps must be large compared to the
trapping length λtr [Eq. (6)] to be strong, while in quasi-1D,
it is sufficient for the trap length d to be longer than the

characteristic scale l0 [Eq. (5)] which accounts for diffu-
sion, trapping rate, and device size. This characteristic scale
is generally shorter than λtr for long devices (Ldev > λtr). A
trap can influence the qubit in three ways: First, it
suppresses the steady-state quasiparticle density at the
junction. Then, the qubit’s T1 time can be increased, since
this time is inversely proportional to the density. Second, a
trap can speed up the decay of the excess quasiparticles,
and, third, it can decrease fluctuations around the steady-
state density. These effects can render the qubit more
stable in time. In fact, there is experimental evidence
(Refs. [20,25]) that fluctuations in the number of quasi-
particles are responsible for at least part of the temporal
variations in T1. Not surprisingly, a long trap (d ≳ λtr)
placed close to the junction is effective in all three aspects:
fast decay of excess quasiparticles, suppression of the
steady-state quasiparticle density (see Fig. 5), and suppres-
sion of density fluctuations at the junction. However, large
traps can be a source of unwanted dissipation; therefore, we
analyze in more detail the effects of shorter traps.
If a trap is weak d ≲ l0, its position has little influence on

the ability to suppress the quasiparticle density and its
fluctuations, as well as on the decay rate of excess quasi-
particles. Interestingly, for a strong but short trap l0 ≲ d≲ λtr,
we find the position of the trap can be optimized in several
ways. First, there is an optimal position that makes the decay
of excess quasiparticles as fast as possible; see Figs. 2 and 3 in
Sec. III A. However, a better choice is, in general, to divide a
strong trap into smaller traps of a length approximately l0 and
distribute those around the device; see Sec. III B. Second, for
the suppression of density fluctuations,we find that there is an
optimal trap position; see Sec. IVA.More important, we find
that there is a maximum distance Lf from the junction up to
which the suppression of fluctuations is effective. Moreover,
thedistance up towhich a large suppressionof the steady-state
density is achieved (Sec. IV) is longer than Lf, so that
suppressing fluctuations also suppresses the steady-state
density. Therefore, by correctly placing multiple traps in
the device in such a way that one is sufficiently close to the
junction, all three beneficial effects of traps can be optimized.
The optimization of trap size, number, and placement is

the only readily accessible way to improve the trap efficacy,
since the effective trapping rate is limited by the energy
relaxation rate in the normal metal [9], a material parameter
that cannot be easily modified. We stress here that these
considerations are valid for normal islands in tunnel contact
with the superconductor—traps formed by gap engineering
(e.g., by placing a lower-gap superconductor in good
contact with the qubit) can behave differently and deserve
further consideration.
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APPENDIX A: COMPARISON WITH

VORTEX TRAPPING

In the coplanar gap capacitor transmon, the antenna pads
are the widest part of the device. This makes it possible to
trap vortices only in the pads when cooling the device in a
small magnetic field. It was shown in Ref. [14] that each
vortex added to a pad increases the density decay rate, and
the effectiveness of trapping by vortices was characterized
by a “trapping power” P. Here, we compare the vortex
trapping with a normal-metal trap covering the pad.
To determine the decay rate of the excess density xQP, we

construct the solution to the diffusion equation (1), along
the lines of the Supplemental Material to Ref. [14]. We treat
all parts of the device except the pad as one dimensional
and write xQP in each segment in the form of Eq. (11). We
approximate the density in the pad as uniform (justified for
the lowest mode if Lpad < λtr, as in the actual devices). We
then impose continuity of the density and current con-
servation where the parts of the device meet and, thus,
arrive at the following effective boundary condition for the
density at the connection between wire and pad (at y ¼ L):

∂xQP

∂y

	

	

	

	

y¼L

¼ L2

pad

�

DQPk
2 − Γeff

WDQP

�

xQPðy ¼ LÞ: ðA1Þ

Let us introduce for simplicity the dimensionless parameter
z ¼ kL; after imposition of all boundary conditions, as
detailed in Ref. [14], we find that the parameter must satisfy
the equation

�

L2

padΓefftL

LW

�

½1 − fðzÞ tan z� − z½tan zþ fðzÞ� ¼ 0; ðA2Þ

with tL ¼ L2=DQP and (see Ref. [14])

fðzÞ ¼ tan

�

z
l

L

�

þ 2
Wc

W
tan

�

z
Lc

L

�

: ðA3Þ

The similar calculation for the case of N̄ vortices in each
pad leads to the following equation for z:

�

N̄
PtL

LW
−az2

�

½1−fðzÞtanz�−z½tanzþfðzÞ�¼0 ðA4Þ

with a ¼ L2

pad=ðLWÞ. Since in the experiments, a as well as

z for the lowest mode and the coefficient multiplying N̄ are
all of order unity, in this equation, we can neglect the term
proportional to a for large number of vortices. Then, by

comparing Eq. (A2) to Eq. (A4), we immediately see that
for the vortex trapping to generate the same decay rate as
the normal-metal trap, the number of vortices in each pad
must be equal to

N̄ ¼
L2

padΓeff

P
: ðA5Þ

Using P ¼ 6.7 × 10−2 cm2 s−1 and Lpad ¼ 80 μm [14], the
number of vortices in each pad needs to be N̄ ≃ 230. This
shows that many vortices are needed to match the efficiency
of the normal-metal trap.
The cooling magnetic field needed to achieve this vortex

number can be estimated to be B ∼ N̄Φ0=Spad ∼ 0.75 G,
well into the regime in which the dissipation caused by
the vortices negatively affects the qubit coherence [14]. A
normal-metal island can also lead to dissipation. However,
solving Eq. (A2) for the parameters specified in Fig. 2,
we find a density decay rate τ−1w ≈ 1.7 ms−1 for a metal-
covered pad. From Fig. 2, we see that an optimally placed
trap of length comparable to l0 can achieve this decay rate,
even though the trap area is much smaller than the pad area;
thus, optimal placement can potentially limit the losses due
to the normal metal. In contrast, allowing more vortices to
enter the qubit (e.g., by fabricating wider wires or increas-
ing the cooling magnetic field) is detrimental. Indeed, in
Ref. [14], at higher magnetic fields the qubit coherence
time was found to shorten, likely due to vortices in the gap
capacitor.

APPENDIX B: FINITE-SIZE TRAP

In this appendix, we treat a 1D system with a finite-size
trap to identify the regime in which it can be considered as
infinitely small. Moreover, we describe the crossover from
an infinitely small to a finite-size trap in the strong-trap
regime.
We consider the 1D diffusion equation (where the spatial

coordinate is 0 ≤ y ≤ L)

_xQP ¼ DQP∇
2xQP −AðyÞΓeffxQP: ðB1Þ

We model the trap as a piece of length d starting from
y ¼ 0, i.e., AðyÞ ¼ 1 for y ≤ d and 0 otherwise; see
Fig. 6(a). Since no quasiparticle can leave the ends of the
1D wire, we adopt “hard wall” boundary conditions [29]

∂xQP

∂y

	

	

	

	

y¼0

¼ ∂xQP

∂y

	

	

	

	

y¼L

¼ 0: ðB2Þ

The time-dependent solution of this problem can be
expressed through the decomposition into eigenmodes,
where
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xQPðy; tÞ ¼
X

k

eμktαknkðyÞ; ðB3Þ

and the eigenmodes fulfill

μknkðyÞ ¼ ½DQP∇⃗
2
−AðyÞΓeff �nkðyÞ: ðB4Þ

The eigenvalue problem can be solved with the ansatz

nkðyÞ ¼
1
ffiffiffiffiffiffi

Nk

p
�

cos ð~kyÞ; y < d;

ak cos ðkyÞ þ bk sin ðkyÞ; y > d;
ðB5Þ

which satisfies the first boundary condition in Eq. (B2), and
we define

~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − λ−2tr

q

ðB6Þ

with λtr of Eq. (6), andNk is a normalization constant. From
this ansatz, it follows that μk ¼ −DQPk

2. Continuity of the
function nk and its derivative at y ¼ d together with the
second condition in Eq. (B2) provide an equation for k:

k tan ½kðL − dÞ� ¼ −~k tan ð~kdÞ: ðB7Þ

While the modes thus defined provide the full time
evolution for all times, we are usually interested in the
lowest mode which dominates the long-time behavior and
which we denote with k0. Assuming k0 ≪ λ−1tr , we have
~k0 ≈ 1=λtr, and we may approximate Eq. (B7) as

leffk ¼ cot ½kðL − dÞ�; ðB8Þ

where we define

leff ¼ λtr coth

�

d

λtr

�

: ðB9Þ

In the case d ≪ λtr (which implies also d ≪ L), Eq. (B8)
becomes

λ2tr

d
k ¼ cot ðkLÞ; ðB10Þ

which is equivalent to the model where the trap is
represented by a (δ) function AðyÞΓeff → γeffδðyÞ, where
γeff ¼ Γeffd and the trap is located at y ¼ 0; see Ref. [9].
Here, in the strong-trap limit d ≫ l0 with l0 of Eq. (5), we
recover the diffusion-limited lowest mode

k0 ≈
π

2L
: ðB11Þ

This solution can be made more general using Eq. (B8).
Namely, even when d≳ λtr (i.e., the trap is not small) we
may identify the regime leff ≪ L − d in which

k0 ≈
π

2

1

L − d
: ðB12Þ

This expression, of course, coincides with the above
diffusion-limited solution for d ≪ L and satisfies the initial
assumption k0 ≪ 1=λtr if λtr ≪ L − d. Hence, we may, for
instance, increase d from d ≪ λtr ≪ L to λtr ≪ d ≪ L,
without changing the decay rate, as long as leff ≪ L.
However, the density of the mode close to the trap changes
drastically with increasing d. Indeed, the normalization
constant Nk in the limit leff , d ≪ L is given by

Nk ≈
1

2

1

λ2trk
2
sinh2

�

d

λtr

�

; ðB13Þ

and, hence, the density at the origin for the lowest mode nk0
becomes

nk0ð0Þ ≈
π
ffiffiffi

2
p λtr

L

1

sinhð d
λtr
Þ ; ðB14Þ

which for d ≪ λtr goes as

nk0ð0Þ ∼
l0

d
; ðB15Þ

while for d ≫ λtr, we find

nk0ð0Þ ∼
λtr

L
e−ðd=λtrÞ: ðB16Þ

As we see, by increasing d above the trapping length scale
λtr, the density of quasiparticles gets exponentially sup-
pressed near the trap. For a long trap d ≫ λtr, such an
exponential suppression takes place also for the steady-
state density, as one can verify by reintroducing the
generation rate g in the right-hand side of Eq. (B1) and
solving for the steady-state configuration with _xQP ¼ 0.

FIG. 6. Simplified systems considered in (a) Appendix B and
(b) Appendix C. Blue denotes superconducting material and red
the part covered by the normal-metal trap. The junction position
marked with an X is at the origin of the wire of length L.
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APPENDIX C: QUASIDEGENERATE MODES

AND THEIR OBSERVABILITY

In this appendix, we consider the dependence of the
lowest mode on the trap position. Moreover, we show that
close to the optimal position, the lowest and second lowest
modes are quasidegenerate. We finally comment on the
consequences of this quasidegeneracy on the observability
of the lowest mode.
We take for simplicity a small trap (d ≪ λtr) in a wire of

length L placed at an arbitrary distance L1 from the origin;
see Fig. 6(b). The quasiparticle density then obeys the
diffusion equation (see Ref. [9] and Appendix B)

_xQP ¼ DQP∇
2xQP − δðy − L1ÞγeffxQP: ðC1Þ

To solve this equation, we look for eigenmodes nk that must
satisfy at y ¼ L1 the condition

lsat½∂ynkðL1 þ 0þÞ − ∂yn
−

k ðL1 − 0þÞ� ¼ nkðL1Þ; ðC2Þ

with lsat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DQPtsat
p

, where tsat ¼ DQP=γ
2

eff [this condition
follows from the standard procedure of integrating Eq. (C1)
over an infinitesimal interval around L1]. The saturation
time tsat was introduced in Ref. [9] when studying the
quasiparticle dynamics during injection and gives the time
scale to reach a steady state. Here, we use the related length
scale lsat to have a more compact notation. Because of the
identity

π

2

lsat

L
¼ l0

d
; ðC3Þ

this is not an independent parameter in the problem, and
the strong (weak) trap condition can be expressed as
lsat ≪ L (lsat ≫ L).
As in the previous appendix [see Eq. (B2)], we assume

hard wall on both ends ∂ynkð0Þ ¼ ∂ynkðLÞ ¼ 0; then the
eigenmodes are given by

nk ¼
�

ak cos ðkyÞ for y < L1;

bk cos ½kðL − yÞ� for y > L1:
ðC4Þ

These modes decay with a rate 1=τk ¼ DQPk
2. From

Eq. (C2) and continuity of nk, we find the condition for k,

lsatk sin ðkLÞ ¼ cos ðkL1Þ cos ½kðL − L1Þ�: ðC5Þ

For an infinitely strong trap lsat → 0, we get the condition

cos ðkL1Þ cos ½kðL − L1Þ� ¼ 0; ðC6Þ

which provides for the lowest mode either k ¼ ½π=ð2L1Þ� or
k ¼ fπ=½2ðL − L1Þ�g depending on whether L − L1≷L1.
Note that the continuity of the modes at y ¼ l requires

ak cos ðkL1Þ ¼ bk cos ½kðL − L1Þ�; ðC7Þ

which means that bk ¼ 0 for k ¼ ½π=ð2L1Þ� or likewise
ak ¼ 0 for k ¼ fπ=½2ðL − L1Þ�g. In other words, the trap
effectively separates the wire into two independent pieces,
one to the left and one to right of the trap, with the
quasiparticle density of the lowest mode fully suppressed in
the shorter piece.
We define the optimal trap position as the one where

the lowest mode decay rate is the highest. It is easy to see
that this is at the degeneracy point L1 ¼ L=2, where
the two modes’ decay rates coincide. Note, however, that
when passing the degeneracy point by increasing L1 from
L1 < L=2 to L1 > L=2, the eigenmode function jumps
abruptly from being nonzero on the right-hand side to
nonzero on the left. Therefore, whether the quasiparticle
density actually decays with the rate defined by the lowest
mode can be strongly affected by the initial conditions. In
order to study this effect, we depart from the ideal,
infinitely strong trap and take a small but finite lsat. In
addition, we look at a system close to the degeneracy point,
that is, L1 ¼ L=2þ δl with δl ≪ L=2. We first expand
Eq. (C5) for small δl,

lsatk sin ðLkÞ þ sin2
�

Lk

2

�

ðkδlÞ2 ¼ cos2
�

Lk

2

�

: ðC8Þ

Next, we set k ¼ π=Lþ δk and, assuming a strong trap
lsat ≪ L, we expand up to second for Lδk ≪ 1 to find

4π2
l2sat þ δl2

L2
¼
�

Lδkþ 2πlsat

L

�

2

: ðC9Þ

This results in

δk∓ ¼ 2
π

L

 

−
lsat

L
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2sat þ δl2
p

L

!

; ðC10Þ

and we see that the degeneracy at δl ¼ 0 is lifted by the
small parameter lsat=L.
From the continuity condition Eq. (C7), we are able to

obtain for each mode the ratio between the (maximal)
densities to the left and to the right of the trap

ak∓
bk∓

¼ −
δl
L
−

lsat
L
∓

ffiffiffiffiffiffiffiffiffiffiffi

l2satþδl2
p

L

δl
L
−

lsat
L
∓

ffiffiffiffiffiffiffiffiffiffiffi

l2satþδl2
p

L

: ðC11Þ

In the limit δl ≪ lsat, this reduces to

ak∓
bk∓

≃�1: ðC12Þ

For lsat ≪ δl, on the other hand, we find
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ak∓
bk∓

≈�
�

2jδlj
lsat

��signδl

; ðC13Þ

which is either very large or very small. This means that, in
this case, the two modes have a very strong asymmetry in
the relative density left and right of the trap.
This asymmetry can affect the measurement of the

density decay rate estimated via a local measurement of
the density in time. Let us suppose that we measure the
quasiparticle density at y ¼ 0. If δl > 0, the trap is farther
away from the detection point, and, thus, the slower mode
has a high density on the detector side; in this case, we
simply measure the slowest decay rate. On the contrary, if
δl < 0 (with jδlj ≫ lsat), the faster mode has most of its
density close to the origin, and, depending on the time scale
on which we measure, we may observe the higher decay
rate. Let us suppose we have an initially homogeneous
quasiparticle distribution so that bk− ≈ akþ . Because of the
asymmetry of the two modes, the initial (t ¼ 0) ratio r
of the densities of the slowest to the faster mode at the
origin y ¼ 0 is

rð0Þ≡ ak−
akþ

≈
lsat

2jδlj ≪ 1: ðC14Þ

Hence, initially, one can observe only the faster mode. As
the decay progresses, this ratio eventually shifts in favor of
the lowest mode,

rðtÞ ¼ rð0Þe−DQPðk2−−k2þÞt ≈
lsat

2jδlj e
8ðjδlj=LÞðt=tDÞ; ðC15Þ

where we define tD ¼ π2DQP=L
2. The time at which the

lowest mode becomes dominant can be estimated by setting
rðtÞ ∼ 1,

t

tD
∼

L

8jδlj ln
2jδlj
lsat

; ðC16Þ

where the right-hand side is≫ 1. Thus, as we see, the time
at which we can observe the decay of the lowest mode is
much longer than tD. This long time scale can also affect
the choice of optimal trap placement, as we discuss in the
next appendix.

APPENDIX D: EFFECTIVE LENGTH

DUE TO THE PAD

In the main text, we discuss a device consisting of a long
quasi-1D wire (length L and width W) with a square pad
(side Lpad) at one end; see Fig 1. Here, we show that for
slow modes the presence of the pad can be accounted for by
the addition of an effective length to the original length of
the wire. Indeed, let us assume that the decay times of the

modes we are interested in are long compared to the
diffusion time τpad ¼ L2

pad=DQP across the pad. Then, we

can take the density in the pad to be approximately uniform,
and this assumption leads to the following boundary
condition [14]

_xwireQP ðLÞ ¼ −
WDQP

L2

pad

∂yx
wire
QP ðLÞ ðD1Þ

for the density in the wire at the position where it joins the
pad. We now show that this condition leads to a hard wall
boundary condition for a 1D wire with an effective length
which is longer due to the pad.
We use for xwireQP an expansion analogous to Eq. (B3),

where each mode in a 1D wire is generally of the form

nwirek ðyÞ ¼ ak cos ðkyÞ þ bk sin ðkyÞ: ðD2Þ

Substituting such an expansion into Eq. (D1) and remem-
bering that μk ¼ −DQPk

2, we find

ak½ ~Lk cos ðLkÞ þ sin ðLkÞ� ¼ bk½cos ðLkÞ − ~Lk sin ðLkÞ�;
ðD3Þ

where we use the notation ~L ¼ L2

pad=W. Defining the

effective length addition for mode k as

Leff
padðkÞ ¼

1

k
arcsin

�

~Lk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~L2k2
p

�

; ðD4Þ

we rewrite Eq. (D3) as

tan f½Lþ Leff
padðkÞ�kg ¼ bk

ak
; ðD5Þ

which indeed has the same form of the hard wall boundary
condition for a wire of length Lþ Leff

pad. For the limiting

case ~Lk ≪ 1, we find that Leff
pad ≈

~L; and, hence, in this

case, the effective total system length is Lþ L2

pad=W.

APPENDIX E: EFFECTIVE LENGTH DUE

TO THE GAP CAPACITOR

Similar to Appendix D, we show here that the gap
capacitor provides an effective extension of the central
wire. For this purpose, we add to one end of the wire of
length L two perpendicular wires, each of length Lc and
width Wc; cf. Fig. 1 in the main text. Current conservation
at the junction between the three wires provides the
condition

W∂yx
wire
QP

	

	

	

y¼L
¼ −2Wc∂xx

c
QP

	

	

	

x¼Lc

: ðE1Þ

A. HOSSEINKHANI et al. PHYS. REV. APPLIED 8, 064028 (2017)

064028-14



Here, we assume that the wire (gap capacitor) density is
constant in the x (y) direction. The eigenmodes of the wire
and capacitor are of the form

nwirek ðyÞ ¼ ak cos ðkyÞ þ bk sin ðkyÞ;
nckðxÞ ¼ ck cos ðkxÞ:

Substituting this ansatz into Eq. (E1) and requiring con-
tinuity at the junction, we find the condition

ak

�

sin ðLkÞ cos ðLckÞ þ 2
Wc

W
sin ðLckÞ cos ðLkÞ

�

¼ bk

�

cos ðLkÞ cos ðLckÞ − 2
Wc

W
sin ðLckÞ sin ðLkÞ

�

:

Defining the effective length addition due to the capacitor
as

Leff
c ðkÞ ¼ 1

k
arcsin

0

B

@

2
Wc

W
tan ðLckÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
W2

c

W2 tan2 ðLckÞ
q

1

C

A
; ðE2Þ

we find the effective hard wall boundary condition

bk

ak
¼ tan f½Lþ Leff

c ðkÞ�kg: ðE3Þ

Note that for 2Wc=W ¼ 1, the capacitor represents simply
a direct extension to the wire with Leff

c ¼ Lc. For
Lck ≪ 1 and 2Wc=W ≪ 1=ðLckÞ, we may approximate
Leff
c ≈ 2ðWc=WÞLc.

APPENDIX F: TRAPS IN THE

XMON GEOMETRY

In this appendix, we further explore the role of device
geometry by studying the optimal placement of traps in the
so-called Xmon qubit of Ref. [28]. We, thus, consider a
four-arm geometry with symmetric arm lengths; see Fig. 7.
Clearly, the optimal position for a single trap is at the center
of the device; however, having two or three traps cannot
lead to large improvement in the decay rate with respect to
one trap because the diffusion time cannot be shortened in
all arms. Therefore, we need at least four traps, one in each
arm, to improve τ−1w . A fifth should again be placed at the
center rather than in the arms. In fact, by generalizing the
argument given at the beginning of Sec. III B, we find that
the decay rate scales as ðNtr=2Þ2 if Ntr is a multiple of 4,
and as ½ðNtr þ 1Þ=2�2 if Ntr ¼ 4nþ 1, n ¼ 0; 1;… While
in both cases the scaling is less favorable than the N2

tr one
for a single wire, we see that for a small number of traps, the
configuration with the additional trap at the center gives a
larger increase in the trapping rate.
To validate the above considerations, we solve the

diffusion equation in the geometry obtained by simply

joining four equally long 1D wires of length L. We consider
1, 2, 4, and 4þ 1 traps, all with the same total area, placed
symmetrically as depicted in Figs. 7(a) and 7(b). We show
the resulting decay rate τ−1w in Fig. 7(c) for a strong trap
obtained by assuming λtr ≪ L. Comparing to the single-
trap case, we find the expected improvement by a factor of
4 (9) for 4 (4þ 1) traps. However, in an actual device, the
length is L ≈ 150 μm, which is not much larger than the
estimate λtr ≈ 86.3 μm and gives, using Eq. (5), a trap size
l0 ≃ 78 μm for the crossover from weak to strong (dif-
fusion-limited) trap. Therefore, in practice, the traps are in
the weak regime, and their placement does not affect the
decay rate much; see Fig. 7(d). Consequently, stronger
traps (with shorter λtr) are needed for effective trapping in
small devices. Alternatively, one can use traps in the ground
plane surrounding the small device to confine most
quasiparticles away from it; see Ref. [30].
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