001     842483
005     20220930130140.0
024 7 _ |a 10.1371/journal.pone.0132876
|2 doi
024 7 _ |a 2128/16782
|2 Handle
024 7 _ |a WOS:000358193100093
|2 WOS
024 7 _ |a altmetric:10247966
|2 altmetric
024 7 _ |a pmid:26167921
|2 pmid
037 _ _ |a FZJ-2018-00708
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Origin and Alteration of Organic Matter in Termite Mounds from Different Feeding Guilds of the Amazon Rainforests
260 _ _ |a Lawrence, Kan.
|c 2015
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516953481_14458
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Correction
520 _ _ |a The impact of termites on nutrient cycling and tropical soil formation depends on their feeding habits and related material transformation. The identification of food sources, however, is difficult, because they are variable and changed by termite activity and nest construction. Here, we related the sources and alteration of organic matter in nests from seven different termite genera and feeding habits in the Terra Firme rainforests to the properties of potential food sources soil, wood, and microepiphytes. Chemical analyses comprised isotopic composition of C and N, cellulosic (CPS), non-cellulosic (NCPS), and N-containing saccharides, and molecular composition screening using pyrolysis-field ionization mass spectrometry (Py-FIMS). The isotopic analysis revealed higher soil δ13C (-27.4‰) and δ15N (6.6‰) values in nests of wood feeding Nasutitermes and Cornitermes than in wood samples (δ13C = -29.1‰, δ15N = 3.4‰), reflecting stable-isotope enrichment with organic matter alterations during or after nest construction. This result was confirmed by elevated NCPS:CPS ratios, indicating a preferential cellulose decomposition in the nests. High portions of muramic acid (MurAc) pointed to the participation of bacteria in the transformation processes. Non-metric multidimensional scaling (NMDS) revealed increasing geophagy in the sequence Termes < Embiratermes < Anoplotermes and increasing xylophagy for Cornitermes < Nasutitermes, and that the nest material of Constrictotermes was similar to the microepiphytes sample, confirming the report that Constrictotermes belongs to the microepiphyte-feeders. We therewith document that nest chemistry of rainforest termites shows variations and evidence of modification by microbial processes, but nevertheless it primarily reflects the trophic niches of the constructors.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Martius, Christopher
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eckhardt, Kai-Uwe
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Garcia, Marcos V. B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Leinweber, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 5
|u fzj
773 _ _ |a 10.1371/journal.pone.0132876
|g Vol. 10, no. 7, p. e0132876 -
|0 PERI:(DE-600)2267670-3
|n 7
|p e0132876 -
|t PLoS one
|v 10
|y 2015
|x 1932-6203
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842483/files/journal.pone.0132876.s002.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842483/files/journal.pone.0132876.s002.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842483/files/journal.pone.0132876.s002.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842483/files/journal.pone.0132876.s002.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842483/files/journal.pone.0132876.s002.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842483/files/journal.pone.0132876.s002.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842483
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21