000842504 001__ 842504
000842504 005__ 20220930130140.0
000842504 0247_ $$2doi$$a10.4172/2161-0460.1000393
000842504 0247_ $$2Handle$$a2128/16680
000842504 0247_ $$2altmetric$$aaltmetric:32461164
000842504 037__ $$aFZJ-2018-00729
000842504 082__ $$a610
000842504 1001_ $$0P:(DE-Juel1)131766$$aGrinberg, Farida$$b0$$eCorresponding author
000842504 245__ $$aNovel Diffusion-Kurtosis-Informed Template Reduces Distortions due to Partial Volume Effects and Improves Statistical between-Group Comparisons
000842504 260__ $$aSunnyvale, Calif.$$bOMICS Publ. Group$$c2017
000842504 3367_ $$2DRIVER$$aarticle
000842504 3367_ $$2DataCite$$aOutput Types/Journal article
000842504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516715168_21770
000842504 3367_ $$2BibTeX$$aARTICLE
000842504 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842504 3367_ $$00$$2EndNote$$aJournal Article
000842504 520__ $$aObjective: Quantitative diffusion magnetic resonance imaging measures carry information about microstructural properties of the underlying tissue. Proper elucidation of their differences in healthy state and pathology, such as Alzheimer’s or Parkinson’s diseases, requires that these measures must be specific for the tissue or anatomic region of interest. However, they are often subjected to biases caused by partial volume effects and leading to erroneous analyses. The purpose of this work was to develop a novel tool allowing one to eliminate affected voxels from statistical analyses and, thus, improve accuracy of the derived measures and enhance reliability of between-group comparisons.Methods: In vivo diffusion kurtosis measurements were performed with a whole-body 3T Siemens MAGNETOM scanner for two differently aged groups of healthy volunteers. Mean values of typical diffusion tensor and kurtosis tensor metrics were estimated for 20 white matter anatomic regions. Relative differences between the group mean parameters in percentage and Cohen’s d values, as well as p-values of two-sided t-test analysis were evaluated before and after correction for partial volume effects.Results: We showed that using the tissue-specific features of diffusion kurtosis distributions allows one to reduce contamination of white matter structures by partial volume effects from neighbouring grey matter regions and cerebrospinal fluid. The performance of the developed method was demonstrated in the semi-automatic atlasbased comparison of two differently aged groups of healthy subjects showing that, after correction, the effect sizes of between-group differences in many regional diffusion indices become larger, whereas p-values of the t-tests decrease.Conclusion: Our work shows that excluding affected voxels from statistical analyses allows one to reduce confounding effects of mixing tissues and improves between-group comparisons. The proposed method is expected to be especially useful for detection of subtle between-group differences and longitudinal changes in studies of neurodegenerative pathologies and ageing associated with white matter atrophy.
000842504 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000842504 588__ $$aDataset connected to CrossRef
000842504 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b1
000842504 7001_ $$0P:(DE-Juel1)166347$$aGao, Xiang$$b2
000842504 7001_ $$0P:(DE-HGF)0$$aKonrad, Kerstin$$b3
000842504 7001_ $$0P:(DE-Juel1)131781$$aNeuner, Irene$$b4
000842504 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b5
000842504 773__ $$0PERI:(DE-600)2711981-6$$a10.4172/2161-0460.1000393$$gVol. 07, no. 06$$n06$$p393$$tJournal of Alzheimers Disease & Parkinsonism$$v07$$x2161-0460$$y2017
000842504 8564_ $$uhttps://juser.fz-juelich.de/record/842504/files/novel-diffusionkurtosisinformed-template-reduces-distortions-dueto-partial-volume-effects-and-improves-statistical-betweengroupcom-2161-0460-1000393.pdf$$yOpenAccess
000842504 8564_ $$uhttps://juser.fz-juelich.de/record/842504/files/novel-diffusionkurtosisinformed-template-reduces-distortions-dueto-partial-volume-effects-and-improves-statistical-betweengroupcom-2161-0460-1000393.gif?subformat=icon$$xicon$$yOpenAccess
000842504 8564_ $$uhttps://juser.fz-juelich.de/record/842504/files/novel-diffusionkurtosisinformed-template-reduces-distortions-dueto-partial-volume-effects-and-improves-statistical-betweengroupcom-2161-0460-1000393.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842504 8564_ $$uhttps://juser.fz-juelich.de/record/842504/files/novel-diffusionkurtosisinformed-template-reduces-distortions-dueto-partial-volume-effects-and-improves-statistical-betweengroupcom-2161-0460-1000393.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842504 8564_ $$uhttps://juser.fz-juelich.de/record/842504/files/novel-diffusionkurtosisinformed-template-reduces-distortions-dueto-partial-volume-effects-and-improves-statistical-betweengroupcom-2161-0460-1000393.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842504 8564_ $$uhttps://juser.fz-juelich.de/record/842504/files/novel-diffusionkurtosisinformed-template-reduces-distortions-dueto-partial-volume-effects-and-improves-statistical-betweengroupcom-2161-0460-1000393.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842504 8767_ $$92017-11-13$$d2017-11-13$$eAPC$$jZahlung erfolgt$$zFZJ-2017-07856
000842504 909CO $$ooai:juser.fz-juelich.de:842504$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000842504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131766$$aForschungszentrum Jülich$$b0$$kFZJ
000842504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b1$$kFZJ
000842504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166347$$aForschungszentrum Jülich$$b2$$kFZJ
000842504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000842504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131781$$aForschungszentrum Jülich$$b4$$kFZJ
000842504 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000842504 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000842504 9141_ $$y2017
000842504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842504 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842504 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842504 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000842504 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000842504 9801_ $$aFullTexts
000842504 980__ $$ajournal
000842504 980__ $$aVDB
000842504 980__ $$aUNRESTRICTED
000842504 980__ $$aI:(DE-Juel1)INM-4-20090406
000842504 980__ $$aI:(DE-82)080010_20140620
000842504 980__ $$aAPC