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dInstitute for Theoretical Physics, Eötvös University, H-1117 Budapest, Hungary

eJülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

Abstract
We want to study thermodynamical observables at finite density. Since direct lattice simulations at finite μB are hindered
by the sign problem an efficient way to study the QCD phase diagram at small finite density is to extrapolate observables
from imaginary chemical potential. In this talk we present results on several observables for the equation of state. The
observables are calculated along the isentropic trajectories in the (T , μB ) plane corresponding to the RHIC Beam
Energy Scan collision energies. The simulations are performed at the physical mass for the light and strange quarks. μS

was tuned in a way to enforce strangeness neutrality to match the experimental conditions; the results are continuum
extrapolated and systematic effects are taken into account for the error estimate.
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1. Introduction

To analyse the quark gluon plasma that is created in heavy ion collision experiments at the LHC or RHIC
a theoretical understanding of the quark gluon plasma in QCD is needed. In the region of the deconfinement
transition lattice QCD is a good tool to study QCD since this area can not be accessed perturbatively. There
have been several ideas in lattice QCD on how to obtain results at real finite chemical potential. However at
the moment direct simulations that are continuum extrapolated and at physical quark masses are restricted
to vanishing or imaginary chemical potential. On the other hand the collisions especially at RHIC take place
away form the axis of zero chemical potential [1]. Therefore information in that region are needed. Even
though it is not possible to do direct lattice simulations, it is possible to extrapolate observables form zero
or imaginary chemical potential. This method is called analytical continuation.

In terms of the baryon chemical potential the pressure can be written as

P(μB, T )
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Fig. 1. The Taylor coefficients of the pressure. The red line shows the expectations of the HRG model.

In this proceedings we will present the continuum extrapolated Taylor coefficients of the pressure up to c6
based on [2]. As well as the extrapolation for the transition temperature published in [3]. Our analysis is
done with

〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉. (2)

2. Analysis

Our lattice calculation uses the 4stout improved staggered action introduced in [4]. We use simulations
on three different lattice size: 403 × 10, 483 × 12 and 643 × 16 and up to six different values for μB/T . As the
simulations on the different lattice sizes correspond to slightly different temperatures and we want to know
the derivative with respect to T , a first step in the analysis is the interpolation of 〈ψ̄ψ〉, χψ̄ψ and χS S for the
transition temperature and n

μBT 2 , nB
μBT 2 and dμQ

dμB
for the equation of state for every μ( j)

B .
The next step in the analysis is to fit the data in the μ̂2

B direction. For this we use three different fit
functions to estimate the systematic error. In for imaginary μB all three fit functions can describe the data
well. However their extrapolation to real μB can be different. The next step is the continuum extrapolation.
We use a linear fit though the data from Nt = 10, 12 and 16. As an alternative analysis we also combine the
the fit in the μB direction and the continuum extrapolation.

From the different fit functions we can determine the Taylor coefficients of the pressure. The results
are shown in figure 1. The statistical error is determined via the bootstrap method with 1000 bootstrap
samples. For the systematic error we use a histogram of all different analysises and take the central 68%
thus employing the histogram method introduced in [5].

The fits can also be used to extrapolate to real chemical potential. The results for the transition temper-
ature are shown in figure 2.

When extrapolating to real chemical potential the higher order coefficients become more important the
further we extrapolate as can be seen from figure 3. From the Taylor coefficient we can calculate n̂B to
different orders. Using only the c2 coefficient is a calculation up to O(μB) as the pressure has to be integrated
over μB compared to n̂B.

Since we tuned our simulations to fulfill

〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉, (3)

it is interesting to know how μQ and μS behave at real chemical potential for different values of μB. The
results are shown in figure 4. These results can also be used in phenomenological calculations. For example
some considerations that can be done with dμ̂Q

dT are presented in [6].
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Fig. 2. The phase diagram based on the μ-dependent Tc from the chiral condensate, analytically continued from imaginary chemical
potential. The blue band indicates the width of the transition. The shaded black region shows the transition line obtained from the
chiral condensate.

Fig. 3. The contribution of the different order coefficients to the baryon number for different values of μB/T
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Fig. 4. μS and μQ at different values for μB with the condition 〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉
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