000842556 001__ 842556
000842556 005__ 20210129232354.0
000842556 0247_ $$2doi$$a10.1103/PhysRevD.95.094512
000842556 0247_ $$2ISSN$$a0556-2821
000842556 0247_ $$2ISSN$$a1089-4918
000842556 0247_ $$2ISSN$$a1550-2368
000842556 0247_ $$2ISSN$$a1550-7998
000842556 0247_ $$2ISSN$$a2470-0010
000842556 0247_ $$2ISSN$$a2470-0029
000842556 0247_ $$2Handle$$a2128/16707
000842556 0247_ $$2WOS$$aWOS:000402471500012
000842556 0247_ $$2altmetric$$aaltmetric:4906938
000842556 037__ $$aFZJ-2018-00775
000842556 082__ $$a530
000842556 1001_ $$0P:(DE-Juel1)166081$$aMages, Simon$$b0$$eCorresponding author
000842556 245__ $$aLattice QCD on nonorientable manifolds
000842556 260__ $$aWoodbury, NY$$bInst.$$c2017
000842556 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2017-05-30
000842556 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2017-05-01
000842556 3367_ $$2DRIVER$$aarticle
000842556 3367_ $$2DataCite$$aOutput Types/Journal article
000842556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516870788_22604
000842556 3367_ $$2BibTeX$$aARTICLE
000842556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842556 3367_ $$00$$2EndNote$$aJournal Article
000842556 520__ $$aA common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.
000842556 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842556 542__ $$2Crossref$$i2017-05-30$$uhttp://link.aps.org/licenses/aps-default-license
000842556 588__ $$aDataset connected to CrossRef
000842556 7001_ $$0P:(DE-HGF)0$$aTóth, Bálint C.$$b1$$eCorresponding author
000842556 7001_ $$0P:(DE-HGF)0$$aBorsányi, Szabolcs$$b2
000842556 7001_ $$0P:(DE-HGF)0$$aFodor, Zoltán$$b3
000842556 7001_ $$0P:(DE-HGF)0$$aKatz, Sándor D.$$b4
000842556 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b5$$eCorresponding author$$ufzj
000842556 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.95.094512$$b : American Physical Society (APS), 2017-05-30$$n9$$p094512$$tPhysical Review D$$v95$$x2470-0010$$y2017
000842556 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.95.094512$$gVol. 95, no. 9, p. 094512$$n9$$p094512$$tPhysical review / D$$v95$$x2470-0010$$y2017
000842556 8564_ $$uhttps://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.pdf$$yOpenAccess
000842556 8564_ $$uhttps://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.gif?subformat=icon$$xicon$$yOpenAccess
000842556 8564_ $$uhttps://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842556 8564_ $$uhttps://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842556 8564_ $$uhttps://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842556 8564_ $$uhttps://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842556 909CO $$ooai:juser.fz-juelich.de:842556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich$$b5$$kFZJ
000842556 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842556 9141_ $$y2017
000842556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842556 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842556 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000842556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2015
000842556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842556 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842556 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842556 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842556 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842556 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842556 980__ $$ajournal
000842556 980__ $$aVDB
000842556 980__ $$aUNRESTRICTED
000842556 980__ $$aI:(DE-Juel1)JSC-20090406
000842556 9801_ $$aFullTexts