001     842556
005     20210129232354.0
024 7 _ |a 10.1103/PhysRevD.95.094512
|2 doi
024 7 _ |a 0556-2821
|2 ISSN
024 7 _ |a 1089-4918
|2 ISSN
024 7 _ |a 1550-2368
|2 ISSN
024 7 _ |a 1550-7998
|2 ISSN
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a 2128/16707
|2 Handle
024 7 _ |a WOS:000402471500012
|2 WOS
024 7 _ |a altmetric:4906938
|2 altmetric
037 _ _ |a FZJ-2018-00775
082 _ _ |a 530
100 1 _ |a Mages, Simon
|0 P:(DE-Juel1)166081
|b 0
|e Corresponding author
245 _ _ |a Lattice QCD on nonorientable manifolds
260 _ _ |a Woodbury, NY
|c 2017
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2017-05-30
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2017-05-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516870788_22604
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
542 _ _ |i 2017-05-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tóth, Bálint C.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Borsányi, Szabolcs
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fodor, Zoltán
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Katz, Sándor D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Szabo, Kalman
|0 P:(DE-Juel1)161563
|b 5
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physrevd.95.094512
|b : American Physical Society (APS), 2017-05-30
|n 9
|p 094512
|3 journal-article
|2 Crossref
|t Physical Review D
|v 95
|y 2017
|x 2470-0010
773 _ _ |a 10.1103/PhysRevD.95.094512
|g Vol. 95, no. 9, p. 094512
|0 PERI:(DE-600)2844732-3
|n 9
|p 094512
|t Physical review / D
|v 95
|y 2017
|x 2470-0010
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842556/files/PhysRevD.95.094512.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842556
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161563
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21