001     842559
005     20240610121334.0
024 7 _ |a 10.1002/aenm.201701663
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a WOS:000424152200011
|2 WOS
037 _ _ |a FZJ-2018-00778
082 _ _ |a 600
100 1 _ |a Schmies, Henrike
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unravelling Degradation Pathways of Oxide-Supported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1518616373_19762
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Knowledge of degradation pathways of catalyst/support ensembles aids the development of rational strategies to improve their stability. Here, this is exemplified using indium tin oxide (ITO)-supported Platinum nanoparticles as electrocatalysts at fuel cell (FC) cathodes under degradation protocols to mimic operating conditions in two potential regimes. The evolution of crystal structure, composition, crystallite and particle size is tracked by in situ X-ray techniques (small and wide angle scattering), metal dissolution by in situ scanning flow cell coupled with mass spectrometry (SFC ICP-MS) and Pt surface morphology by advanced electron microscopy. In a regular FC operation regime, Pt poisoning rather than Pt particle growth, agglomeration, dissolution or detachment was found to be the likely origin of the observed degradation and ORR activity losses. In the start-up regime degradation is actually suppressed and only minor losses in catalytic activity are observed. The presented data thus highlight the excellent nanoparticle stabilization and corrosion resistance of the ITO support, yet point to a degradation pathway involving Pt surface modifications by deposition of sub-monolayers of support metal ions. The identified degradation pathway of the Pt/oxide catalyst/support couple contributes to our understanding of cathode electrocatalysts for polymer electrolyte fuel cells (PEFC).
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bergmann, Arno
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Drnec, Jakub
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Guanxiong
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Teschner, Detre
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kühl, Stefanie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sandbeck, Daniel J. S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cherevko, Serhiy
|0 P:(DE-Juel1)168567
|b 7
700 1 _ |a Gocyla, Martin
|0 P:(DE-Juel1)161464
|b 8
700 1 _ |a Shviro, Meital
|0 P:(DE-Juel1)165174
|b 9
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 10
700 1 _ |a Ramani, Vijay
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 12
700 1 _ |a Mayrhofer, Karl J. J.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Strasser, Peter
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1002/aenm.201701663
|g p. 1701663 -
|0 PERI:(DE-600)2594556-7
|n 4
|p 1701663
|t Advanced energy materials
|v 8
|y 2018
|x 1614-6832
909 C O |o oai:juser.fz-juelich.de:842559
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)168567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV ENERGY MATER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21