000842560 001__ 842560 000842560 005__ 20240711101506.0 000842560 0247_ $$2doi$$a10.1021/jacs.7b06846 000842560 0247_ $$2ISSN$$a0002-7863 000842560 0247_ $$2ISSN$$a1520-5126 000842560 0247_ $$2pmid$$apmid:29019692 000842560 0247_ $$2WOS$$aWOS:000416496400025 000842560 037__ $$aFZJ-2018-00779 000842560 082__ $$a540 000842560 1001_ $$0P:(DE-HGF)0$$aBeermann, Vera$$b0 000842560 245__ $$aTuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt–Ni Nanoparticles by Thermal Annealing − Elucidating the Surface Atomic Structural and Compositional Changes 000842560 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017 000842560 3367_ $$2DRIVER$$aarticle 000842560 3367_ $$2DataCite$$aOutput Types/Journal article 000842560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518517221_2222 000842560 3367_ $$2BibTeX$$aARTICLE 000842560 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000842560 3367_ $$00$$2EndNote$$aJournal Article 000842560 520__ $$aShape-controlled octahedral Pt–Ni alloy nanoparticles exhibit remarkably high activities for the electroreduction of molecular oxygen (oxygen reduction reaction, ORR), which makes them fuel-cell cathode catalysts with exceptional potential. To unfold their full and optimized catalytic activity and stability, however, the nano-octahedra require post-synthesis thermal treatments, which alter the surface atomic structure and composition of the crystal facets. Here, we address and strive to elucidate the underlying surface chemical processes using a combination of ex situ analytical techniques with in situ transmission electron microscopy (TEM), in situ X-ray diffraction (XRD), and in situ electrochemical Fourier transformed infrared (FTIR) experiments. We present a robust fundamental correlation between annealing temperature and catalytic activity, where a ∼25 times higher ORR activity than for commercial Pt/C (2.7 A mgPt–1 at 0.9 VRHE) was reproducibly observed upon annealing at 300 °C. The electrochemical stability, however, peaked out at the most severe heat treatments at 500 °C. Aberration-corrected scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDX) in combination with in situ electrochemical CO stripping/FTIR data revealed subtle, but important, differences in the formation and chemical nature of Pt-rich and Ni-rich surface domains in the octahedral (111) facets. Estimating trends in surface chemisorption energies from in situ electrochemical CO/FTIR investigations suggested that balanced annealing generates an optimal degree of Pt surface enrichment, while the others exhibited mostly Ni-rich facets. The insights from our study are quite generally valid and aid in developing suitable post-synthesis thermal treatments for other alloy nanocatalysts as well. 000842560 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000842560 588__ $$aDataset connected to CrossRef 000842560 7001_ $$0P:(DE-Juel1)161464$$aGocyla, Martin$$b1 000842560 7001_ $$0P:(DE-HGF)0$$aKühl, Stefanie$$b2 000842560 7001_ $$00000-0001-9034-2335$$aPadgett, Elliot$$b3 000842560 7001_ $$0P:(DE-HGF)0$$aSchmies, Henrike$$b4 000842560 7001_ $$0P:(DE-HGF)0$$aGoerlin, Mikaela$$b5 000842560 7001_ $$0P:(DE-HGF)0$$aErini, Nina$$b6 000842560 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b7 000842560 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b8 000842560 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b9 000842560 7001_ $$0P:(DE-HGF)0$$aMuller, David A.$$b10 000842560 7001_ $$00000-0002-3884-436X$$aStrasser, Peter$$b11$$eCorresponding author 000842560 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.7b06846$$gVol. 139, no. 46, p. 16536 - 16547$$n46$$p16536 - 16547$$tJournal of the American Chemical Society$$v139$$x1520-5126$$y2017 000842560 8564_ $$uhttps://juser.fz-juelich.de/record/842560/files/jacs.7b06846.pdf$$yRestricted 000842560 8564_ $$uhttps://juser.fz-juelich.de/record/842560/files/jacs.7b06846.gif?subformat=icon$$xicon$$yRestricted 000842560 8564_ $$uhttps://juser.fz-juelich.de/record/842560/files/jacs.7b06846.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000842560 8564_ $$uhttps://juser.fz-juelich.de/record/842560/files/jacs.7b06846.jpg?subformat=icon-180$$xicon-180$$yRestricted 000842560 8564_ $$uhttps://juser.fz-juelich.de/record/842560/files/jacs.7b06846.jpg?subformat=icon-640$$xicon-640$$yRestricted 000842560 8564_ $$uhttps://juser.fz-juelich.de/record/842560/files/jacs.7b06846.pdf?subformat=pdfa$$xpdfa$$yRestricted 000842560 909CO $$ooai:juser.fz-juelich.de:842560$$pVDB 000842560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b7$$kFZJ 000842560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b8$$kFZJ 000842560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ 000842560 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000842560 9141_ $$y2017 000842560 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000842560 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2015 000842560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000842560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000842560 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000842560 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000842560 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000842560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000842560 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000842560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000842560 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000842560 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000842560 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000842560 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000842560 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2015 000842560 920__ $$lyes 000842560 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000842560 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1 000842560 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x2 000842560 980__ $$ajournal 000842560 980__ $$aVDB 000842560 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000842560 980__ $$aI:(DE-Juel1)PGI-5-20110106 000842560 980__ $$aI:(DE-Juel1)IEK-3-20101013 000842560 980__ $$aUNRESTRICTED 000842560 981__ $$aI:(DE-Juel1)ICE-2-20101013 000842560 981__ $$aI:(DE-Juel1)ER-C-1-20170209