001 | 842566 | ||
005 | 20240610120430.0 | ||
024 | 7 | _ | |a 10.1002/ange.201705685 |2 doi |
024 | 7 | _ | |a 0044-8249 |2 ISSN |
024 | 7 | _ | |a 1521-3757 |2 ISSN |
024 | 7 | _ | |a 2128/16701 |2 Handle |
024 | 7 | _ | |a altmetric:33346433 |2 altmetric |
037 | _ | _ | |a FZJ-2018-00785 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Marino, Emanuele |0 0000-0002-0793-9796 |b 0 |
245 | _ | _ | |a Repairing Nanoparticle Surface Defects |
260 | _ | _ | |a Weinheim |c 2017 |b Wiley-VCH65543 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1516865638_22598 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na4SnS4 and (NH4)4Sn2S6. These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Kodger, Thomas E. |0 0000-0002-7796-9165 |b 1 |
700 | 1 | _ | |a Crisp, Ryan W. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Timmerman, Dolf |0 0000-0002-5885-0089 |b 3 |
700 | 1 | _ | |a MacArthur, Katherine E. |0 P:(DE-Juel1)168372 |b 4 |
700 | 1 | _ | |a Heggen, Marc |0 P:(DE-Juel1)130695 |b 5 |
700 | 1 | _ | |a Schall, Peter |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1002/ange.201705685 |g Vol. 129, no. 44, p. 13983 - 13987 |0 PERI:(DE-600)1479266-7 |n 44 |p 13983 - 13987 |t Angewandte Chemie |v 129 |y 2017 |x 0044-8249 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/842566/files/Marino_et_al-2017-Angewandte_Chemie.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/842566/files/Marino_et_al-2017-Angewandte_Chemie.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/842566/files/Marino_et_al-2017-Angewandte_Chemie.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/842566/files/Marino_et_al-2017-Angewandte_Chemie.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/842566/files/Marino_et_al-2017-Angewandte_Chemie.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/842566/files/Marino_et_al-2017-Angewandte_Chemie.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:842566 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)168372 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130695 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|