000842567 001__ 842567
000842567 005__ 20210129232357.0
000842567 0247_ $$2doi$$a10.1038/s41467-017-01545-w
000842567 0247_ $$2Handle$$a2128/16702
000842567 0247_ $$2altmetric$$aaltmetric:28539024
000842567 0247_ $$2pmid$$apmid:29116238
000842567 0247_ $$2WOS$$aWOS:000414534700005
000842567 037__ $$aFZJ-2018-00786
000842567 082__ $$a500
000842567 1001_ $$00000-0002-2774-1576$$aCui, Chunhua$$b0$$eCorresponding author
000842567 245__ $$aAtomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis
000842567 260__ $$aLondon$$bNature Publishing Group$$c2017
000842567 3367_ $$2DRIVER$$aarticle
000842567 3367_ $$2DataCite$$aOutput Types/Journal article
000842567 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516865794_22601
000842567 3367_ $$2BibTeX$$aARTICLE
000842567 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842567 3367_ $$00$$2EndNote$$aJournal Article
000842567 520__ $$aAtomically dispersed supported catalysts can maximize atom efficiency and minimize cost. In spite of much progress in gas-phase catalysis, applying such catalysts in the field of renewable energy coupled with electrochemistry remains a challenge due to their limited durability in electrolyte. Here, we report a robust and atomically dispersed hybrid catalyst formed in situ on a hematite semiconductor support during photoelectrochemical oxygen evolution by electrostatic adsorption of soluble monomeric [Ir(OH)6]2− coupled to positively charged NiOx sites. The alkali-stable [Ir(OH)6]2− features synergistically enhanced activity toward water oxidation through NiOx that acts as a “movable bridge” of charge transfer from the hematite surface to the single iridium center. This hybrid catalyst sustains high performance and stability in alkaline electrolyte for >80 h of operation. Our findings provide a promising path for soluble catalysts that are weakly and reversibly bound to semiconductor-supported hole-accumulation inorganic materials under catalytic reaction conditions as hybrid active sites for photoelectrocatalysis.
000842567 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000842567 588__ $$aDataset connected to CrossRef
000842567 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b1
000842567 7001_ $$0P:(DE-HGF)0$$aZabka, Wolf-Dietrich$$b2
000842567 7001_ $$00000-0001-9167-4008$$aCui, Wei$$b3
000842567 7001_ $$0P:(DE-HGF)0$$aOsterwalder, Jürg$$b4
000842567 7001_ $$0P:(DE-HGF)0$$aProbst, Benjamin$$b5
000842567 7001_ $$0P:(DE-HGF)0$$aAlberto, Roger$$b6
000842567 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-017-01545-w$$gVol. 8, no. 1, p. 1341$$n1$$p1341$$tNature Communications$$v8$$x2041-1723$$y2017
000842567 8564_ $$uhttps://juser.fz-juelich.de/record/842567/files/s41467-017-01545-w.pdf$$yOpenAccess
000842567 8564_ $$uhttps://juser.fz-juelich.de/record/842567/files/s41467-017-01545-w.gif?subformat=icon$$xicon$$yOpenAccess
000842567 8564_ $$uhttps://juser.fz-juelich.de/record/842567/files/s41467-017-01545-w.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842567 8564_ $$uhttps://juser.fz-juelich.de/record/842567/files/s41467-017-01545-w.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842567 8564_ $$uhttps://juser.fz-juelich.de/record/842567/files/s41467-017-01545-w.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842567 8564_ $$uhttps://juser.fz-juelich.de/record/842567/files/s41467-017-01545-w.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842567 909CO $$ooai:juser.fz-juelich.de:842567$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b1$$kFZJ
000842567 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000842567 9141_ $$y2017
000842567 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842567 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000842567 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842567 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000842567 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000842567 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000842567 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842567 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842567 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842567 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842567 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842567 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842567 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000842567 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842567 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000842567 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842567 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842567 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842567 920__ $$lyes
000842567 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000842567 980__ $$ajournal
000842567 980__ $$aVDB
000842567 980__ $$aUNRESTRICTED
000842567 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000842567 9801_ $$aFullTexts