000842571 001__ 842571
000842571 005__ 20240610121122.0
000842571 0247_ $$2doi$$a10.1021/acs.nanolett.6b04799
000842571 0247_ $$2pmid$$apmid:28644034
000842571 0247_ $$2WOS$$aWOS:000405643300002
000842571 0247_ $$2altmetric$$aaltmetric:22237216
000842571 037__ $$aFZJ-2018-00790
000842571 041__ $$aEnglish
000842571 082__ $$a540
000842571 1001_ $$0P:(DE-HGF)0$$aAarons, Jolyon$$b0
000842571 245__ $$aPredicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory
000842571 260__ $$aWashington, DC$$bACS Publ.$$c2017
000842571 3367_ $$2DRIVER$$aarticle
000842571 3367_ $$2DataCite$$aOutput Types/Journal article
000842571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516868163_22602
000842571 3367_ $$2BibTeX$$aARTICLE
000842571 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842571 3367_ $$00$$2EndNote$$aJournal Article
000842571 520__ $$aMany studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.
000842571 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000842571 7001_ $$0P:(DE-HGF)0$$aJones, Lewys$$b1$$eCorresponding author
000842571 7001_ $$0P:(DE-HGF)0$$aVarambhia, Aakahs$$b2
000842571 7001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine$$b3
000842571 7001_ $$0P:(DE-HGF)0$$aOzkaya, Dogan$$b4
000842571 7001_ $$0P:(DE-HGF)0$$aSarwar, Misbah$$b5
000842571 7001_ $$0P:(DE-HGF)0$$aSkylaris, Chris-Kriton$$b6
000842571 7001_ $$0P:(DE-HGF)0$$aNellist, Peter$$b7
000842571 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.6b04799$$n7$$p4003 - 4012$$tNano letters$$v17 $$x1530-6984$$y2017
000842571 8564_ $$uhttps://juser.fz-juelich.de/record/842571/files/acs.nanolett.6b04799.pdf$$yRestricted
000842571 8564_ $$uhttps://juser.fz-juelich.de/record/842571/files/acs.nanolett.6b04799.gif?subformat=icon$$xicon$$yRestricted
000842571 8564_ $$uhttps://juser.fz-juelich.de/record/842571/files/acs.nanolett.6b04799.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000842571 8564_ $$uhttps://juser.fz-juelich.de/record/842571/files/acs.nanolett.6b04799.jpg?subformat=icon-180$$xicon-180$$yRestricted
000842571 8564_ $$uhttps://juser.fz-juelich.de/record/842571/files/acs.nanolett.6b04799.jpg?subformat=icon-640$$xicon-640$$yRestricted
000842571 8564_ $$uhttps://juser.fz-juelich.de/record/842571/files/acs.nanolett.6b04799.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842571 909CO $$ooai:juser.fz-juelich.de:842571$$pVDB
000842571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168372$$aForschungszentrum Jülich$$b3$$kFZJ
000842571 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000842571 9141_ $$y2017
000842571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842571 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015
000842571 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842571 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842571 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842571 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842571 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842571 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015
000842571 920__ $$lyes
000842571 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000842571 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000842571 980__ $$ajournal
000842571 980__ $$aVDB
000842571 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000842571 980__ $$aI:(DE-Juel1)PGI-5-20110106
000842571 980__ $$aUNRESTRICTED
000842571 981__ $$aI:(DE-Juel1)ER-C-1-20170209