001     842596
005     20210129232403.0
024 7 _ |a 10.1186/s13550-017-0317-9
|2 doi
024 7 _ |a 2128/16730
|2 Handle
024 7 _ |a WOS:000408233100001
|2 WOS
037 _ _ |a FZJ-2018-00809
082 _ _ |a 610
100 1 _ |a Kordys, Elena
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Motor impairment and compensation in a hemiparkinsonian rat model: correlation between dopamine depletion severity, cerebral metabolism and gait patterns
260 _ _ |a Berlin
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516891505_22610
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BACKGROUND:In Parkinson's disease (PD), cerebral dopamine depletion is associated with PD subtype-specific metabolic patterns of hypo- and hypermetabolism. It has been hypothesised that hypometabolism reflects impairment, while hypermetabolism may indicate compensatory activity. In order to associate metabolic patterns with pathophysiological and compensatory mechanisms, we combined resting state [18F]FDG-PET (to demonstrate brain metabolism in awake animals), [18F]FDOPA-PET (dopamine depletion severity) and gait analysis in a unilateral 6-hydroxydopamine rat model.RESULTS:We found unilateral nigro-striatal dopaminergic loss to decrease swing speed of the contralesional forelimb and stride length of all paws in association with depletion severity. Depletion severity was found to correlate with compensatory changes such as increased stance time of the other three paws and diagonal weight shift to the ipsilesional hind paw. [18F]FDG-PET revealed ipsilesional hypo- and contralesional hypermetabolism; metabolic deactivation of the ipsilesional network needed for sensorimotor integration (hippocampus/retrosplenial cortex/lateral posterior thalamus) was solely associated with bradykinesia, but hypometabolism of the ipsilesional rostral forelimb area was related to both pathological and compensatory gait changes. Mixed effects were also found for hypermetabolism of the contralesional midbrain locomotor region, while contralesional striatal hyperactivation was linked to motor impairments rather than compensation.CONCLUSIONS:Our results indicate that ipsilesional hypo- and contralesional hypermetabolism contribute to both motor impairment and compensation. This is the first time when energy metabolism, dopamine depletion and gait analysis were combined in a hemiparkinsonian model. By experimentally increasing or decreasing compensational brain activity, its potential and limits can be further investigated.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Apetz, Nadine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schneider, Katharina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Duncan, Eilidh
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Büschbell, Beatriz
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rohleder, Cathrin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sué, Michael
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Drzezga, Alexander
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 8
700 1 _ |a Timmermann, Lars
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Endepols
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1186/s13550-017-0317-9
|g Vol. 7, no. 1, p. 68
|0 PERI:(DE-600)2619892-7
|n 1
|p 68
|t EJNMMI Research
|v 7
|y 2017
|x 2191-219X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/842596/files/s13550-017-0317-9.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/842596/files/s13550-017-0317-9.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/842596/files/s13550-017-0317-9.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/842596/files/s13550-017-0317-9.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/842596/files/s13550-017-0317-9.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/842596/files/s13550-017-0317-9.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:842596
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a inm-5
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EJNMMI RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21