000842606 001__ 842606
000842606 005__ 20240619091235.0
000842606 0247_ $$2doi$$a10.1039/C7NR07912E
000842606 0247_ $$2ISSN$$a2040-3364
000842606 0247_ $$2ISSN$$a2040-3372
000842606 0247_ $$2pmid$$apmid:29265122
000842606 0247_ $$2WOS$$aWOS:000423259000013
000842606 037__ $$aFZJ-2018-00819
000842606 082__ $$a600
000842606 1001_ $$00000-0001-8749-5250$$aZhang, P.$$b0
000842606 245__ $$aShell-binary nanoparticle materials with variable electrical and electro-mechanical properties
000842606 260__ $$aCambridge$$bRSC Publ.$$c2018
000842606 3367_ $$2DRIVER$$aarticle
000842606 3367_ $$2DataCite$$aOutput Types/Journal article
000842606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516892878_22598
000842606 3367_ $$2BibTeX$$aARTICLE
000842606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842606 3367_ $$00$$2EndNote$$aJournal Article
000842606 520__ $$aNanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.
000842606 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000842606 588__ $$aDataset connected to CrossRef
000842606 7001_ $$0P:(DE-Juel1)128663$$aBousack, Herbert$$b1
000842606 7001_ $$0P:(DE-Juel1)161308$$aDai, Y.$$b2
000842606 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, A.$$b3
000842606 7001_ $$0P:(DE-Juel1)128707$$aMayer, D.$$b4$$eCorresponding author
000842606 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C7NR07912E$$gVol. 10, no. 3, p. 992 - 1003$$n3$$p992 - 1003$$tNanoscale$$v10$$x2040-3372$$y2018
000842606 8564_ $$uhttps://juser.fz-juelich.de/record/842606/files/c7nr07912e.pdf$$yRestricted
000842606 8564_ $$uhttps://juser.fz-juelich.de/record/842606/files/c7nr07912e.gif?subformat=icon$$xicon$$yRestricted
000842606 8564_ $$uhttps://juser.fz-juelich.de/record/842606/files/c7nr07912e.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000842606 8564_ $$uhttps://juser.fz-juelich.de/record/842606/files/c7nr07912e.jpg?subformat=icon-180$$xicon-180$$yRestricted
000842606 8564_ $$uhttps://juser.fz-juelich.de/record/842606/files/c7nr07912e.jpg?subformat=icon-640$$xicon-640$$yRestricted
000842606 8564_ $$uhttps://juser.fz-juelich.de/record/842606/files/c7nr07912e.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842606 909CO $$ooai:juser.fz-juelich.de:842606$$pVDB
000842606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128663$$aForschungszentrum Jülich$$b1$$kFZJ
000842606 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)128663$$a ICS-8$$b1
000842606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b3$$kFZJ
000842606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b4$$kFZJ
000842606 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000842606 9141_ $$y2018
000842606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2015
000842606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842606 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842606 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842606 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842606 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842606 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2015
000842606 920__ $$lyes
000842606 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000842606 980__ $$ajournal
000842606 980__ $$aVDB
000842606 980__ $$aI:(DE-Juel1)ICS-8-20110106
000842606 980__ $$aUNRESTRICTED
000842606 981__ $$aI:(DE-Juel1)IBI-3-20200312