000842607 001__ 842607
000842607 005__ 20240610121123.0
000842607 0247_ $$2doi$$a10.1103/PhysRevLett.119.222505
000842607 0247_ $$2ISSN$$a0031-9007
000842607 0247_ $$2ISSN$$a1079-7114
000842607 0247_ $$2ISSN$$a1092-0145
000842607 0247_ $$2arXiv$$aarXiv:1702.05177
000842607 0247_ $$2Handle$$a2128/17003
000842607 0247_ $$2pmid$$apmid:29286765
000842607 0247_ $$2WOS$$aWOS:000416852200006
000842607 0247_ $$2altmetric$$aaltmetric:16548810
000842607 037__ $$aFZJ-2018-00820
000842607 082__ $$a550
000842607 1001_ $$0P:(DE-HGF)0$$aElhatisari, Serdar$$b0
000842607 245__ $$aAb initio Calculations of the Isotopic Dependence of Nuclear Clustering
000842607 260__ $$aCollege Park, Md.$$bAPS$$c2017
000842607 3367_ $$2DRIVER$$aarticle
000842607 3367_ $$2DataCite$$aOutput Types/Journal article
000842607 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552978666_14319
000842607 3367_ $$2BibTeX$$aARTICLE
000842607 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842607 3367_ $$00$$2EndNote$$aJournal Article
000842607 500__ $$aVersion to appear in Physical Review Letters. 5 + 12 pages (main +   supplemental materials), 3 + 12 figures (main + supplemental materials)
000842607 520__ $$aNuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C.
000842607 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842607 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000842607 536__ $$0G:(DE-Juel1)hfz02_20150501$$aNuclear Lattice Simulations (hfz02_20150501)$$chfz02_20150501$$fNuclear Lattice Simulations$$x2
000842607 536__ $$0G:(DE-Juel1)jikp04_20130501$$aNuclear Lattice simulations (jikp04_20130501)$$cjikp04_20130501$$fNuclear Lattice simulations$$x3
000842607 536__ $$0G:(DE-Juel1)jara0015_20130501$$aNuclear Lattice Simulations (jara0015_20130501)$$cjara0015_20130501$$fNuclear Lattice Simulations$$x4
000842607 588__ $$aDataset connected to arXivarXiv, CrossRef
000842607 7001_ $$0P:(DE-Juel1)131142$$aEpelbaum, Evgeny$$b1$$ufzj
000842607 7001_ $$0P:(DE-Juel1)131216$$aKrebs, Hermann$$b2
000842607 7001_ $$0P:(DE-Juel1)145995$$aLähde, Timo$$b3$$ufzj
000842607 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b4$$ufzj
000842607 7001_ $$0P:(DE-Juel1)159474$$aLi, Ning$$b5$$ufzj
000842607 7001_ $$0P:(DE-Juel1)159199$$aLu, Bingnan$$b6$$ufzj
000842607 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b7$$ufzj
000842607 7001_ $$0P:(DE-HGF)0$$aRupak, Gautam$$b8
000842607 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.119.222505$$gVol. 119, no. 22, p. 222505$$n22$$p222505$$tPhysical review letters$$v119$$x1079-7114$$y2017
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/1702.05177.pdf$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.pdf$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/1702.05177.gif?subformat=icon$$xicon$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/1702.05177.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/1702.05177.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/1702.05177.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.gif?subformat=icon$$xicon$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842607 8564_ $$uhttps://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842607 909CO $$ooai:juser.fz-juelich.de:842607$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131142$$aForschungszentrum Jülich$$b1$$kFZJ
000842607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145995$$aForschungszentrum Jülich$$b3$$kFZJ
000842607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b4$$kFZJ
000842607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159474$$aForschungszentrum Jülich$$b5$$kFZJ
000842607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159199$$aForschungszentrum Jülich$$b6$$kFZJ
000842607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b7$$kFZJ
000842607 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842607 9141_ $$y2017
000842607 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842607 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842607 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000842607 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000842607 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000842607 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842607 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842607 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842607 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842607 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842607 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842607 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842607 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842607 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000842607 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842607 920__ $$lyes
000842607 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000842607 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000842607 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000842607 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000842607 9801_ $$aFullTexts
000842607 980__ $$ajournal
000842607 980__ $$aVDB
000842607 980__ $$aI:(DE-Juel1)IAS-4-20090406
000842607 980__ $$aI:(DE-Juel1)IKP-3-20111104
000842607 980__ $$aI:(DE-Juel1)NIC-20090406
000842607 980__ $$aI:(DE-82)080012_20140620
000842607 980__ $$aUNRESTRICTED
000842607 981__ $$aI:(DE-Juel1)IAS-4-20090406