001     842607
005     20240610121123.0
024 7 _ |a 10.1103/PhysRevLett.119.222505
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a arXiv:1702.05177
|2 arXiv
024 7 _ |a 2128/17003
|2 Handle
024 7 _ |a pmid:29286765
|2 pmid
024 7 _ |a WOS:000416852200006
|2 WOS
024 7 _ |a altmetric:16548810
|2 altmetric
037 _ _ |a FZJ-2018-00820
082 _ _ |a 550
100 1 _ |a Elhatisari, Serdar
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering
260 _ _ |a College Park, Md.
|c 2017
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552978666_14319
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Version to appear in Physical Review Letters. 5 + 12 pages (main + supplemental materials), 3 + 12 figures (main + supplemental materials)
520 _ _ |a Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (4He nuclei) within the interior of a larger nucleus. While clustering is important for several well-known examples, much remains to be discovered about the general nature of clustering in nuclei. In this letter we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and 16C have excitations analogous to the well-known Hoyle state resonance in 12C.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a Nuclear Lattice Simulations (hfz02_20150501)
|0 G:(DE-Juel1)hfz02_20150501
|c hfz02_20150501
|x 2
|f Nuclear Lattice Simulations
536 _ _ |a Nuclear Lattice simulations (jikp04_20130501)
|0 G:(DE-Juel1)jikp04_20130501
|c jikp04_20130501
|x 3
|f Nuclear Lattice simulations
536 _ _ |a Nuclear Lattice Simulations (jara0015_20130501)
|0 G:(DE-Juel1)jara0015_20130501
|c jara0015_20130501
|x 4
|f Nuclear Lattice Simulations
588 _ _ |a Dataset connected to arXivarXiv, CrossRef
700 1 _ |a Epelbaum, Evgeny
|0 P:(DE-Juel1)131142
|b 1
|u fzj
700 1 _ |a Krebs, Hermann
|0 P:(DE-Juel1)131216
|b 2
700 1 _ |a Lähde, Timo
|0 P:(DE-Juel1)145995
|b 3
|u fzj
700 1 _ |a Lee, Dean
|0 P:(DE-Juel1)156278
|b 4
|u fzj
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)159474
|b 5
|u fzj
700 1 _ |a Lu, Bingnan
|0 P:(DE-Juel1)159199
|b 6
|u fzj
700 1 _ |a Meißner, Ulf-G.
|0 P:(DE-Juel1)131252
|b 7
|u fzj
700 1 _ |a Rupak, Gautam
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1103/PhysRevLett.119.222505
|g Vol. 119, no. 22, p. 222505
|0 PERI:(DE-600)1472655-5
|n 22
|p 222505
|t Physical review letters
|v 119
|y 2017
|x 1079-7114
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/1702.05177.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/1702.05177.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/1702.05177.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/1702.05177.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/1702.05177.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842607/files/PhysRevLett.119.222505.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:842607
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131142
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145995
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159474
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21