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Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha

particles (4He nuclei) within the interior of a larger nucleus. In this Letter, we present lattice Monte Carlo

calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon,

and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon

correlations at short distances, we determine the shape of the alpha clusters and the entanglement of

nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational

approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field

Monte Carlo simulations in computing density correlations relative to the center of mass. We use the

pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster

correlations in 12C, 14C, and 16C. The structural similarities among the carbon isotopes suggest that 14C and
16C have excitations analogous to the well-known Hoyle state resonance in 12C.

DOI: 10.1103/PhysRevLett.119.222505

Nuclear clustering has been shown to be important in

several well-known examples [1–4], however much

remains to be discovered about the general nature of

clustering in nuclei. There have been many exciting recent

advances in ab initio nuclear structure theory [5–12] that

link nuclear forces to nuclear structure in impressive

agreement with experimental data. However, we still know

very little about the quantum correlations among nucleons

that give rise to nuclear clustering and collective behavior.

The main difficulty in studying alpha clusters in nuclei is

that the calculation must include four-nucleon correlations.

Unfortunately, in many cases this dramatically increases the

amount of computer memory and computing time needed

in calculations of heavier nuclei. Nevertheless, there is

promising work in progress using the symmetry-adapted

no-core shell model [13], antisymmetrized molecular

dynamics [14], fermionic molecular dynamics [15], the

alpha-container model [16], the Monte Carlo shell model

[17], and the Green’s function Monte Carlo approach [18].

Lattice calculations using chiral effective field theory

and auxiliary-field Monte Carlo methods have probed

alpha clustering in the 12C and 16O systems [19–22].

However, these lattice simulations have encountered severe

Monte Carlo sign oscillations in cases where the number of

protons Z and number of neutrons N are different. In this

Letter we solve this problem by using a new leading-order

lattice action that retains a greater amount of symmetry,

thereby removing nearly all of the Monte Carlo sign

oscillations. The relevant symmetry is Wigner’s SU(4)

spin-isospin symmetry [23], where the four nucleon

degrees of freedom can be rotated as four components

of a complex vector. Previous attempts using SU(4)

symmetry had failed due to the tendency of nuclei to

overbind in larger nuclei. However, recent progress has

uncovered important connections between local inter-

actions and nuclear binding, as well as the significance

of the alpha-alpha interaction [12,24,25]. Following this

approach, we have constructed a leading-order lattice

action with highly suppressed sign oscillations, which

reproduces the ground-state binding energies of the hydro-

gen, helium, beryllium, carbon, and oxygen isotopes to an

accuracy of 0.7 MeV per nucleon or better. The lattice

results are shown in Fig. 1(a) in comparison with the

observed ground state energies. The astonishingly good

agreement at leading order in chiral effective field theory

with only three free parameters is quite remarkable and
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bodes well for future calculations at higher orders. We

use auxiliary-field Monte Carlo simulations with a spatial

lattice spacing of 1.97 fm and lattice time spacing

1.97 fm=c. We comment that the results for these ground

state energies are equally good when including Coulomb

repulsion and a slightly more attractive nucleon-nucleon

short-range interaction. The full details of the lattice

interaction, nucleon-nucleon phase shifts, simulation

methods, and results are given in the Supplemental

Material [26].

Let ρðnÞ be the total nucleon density operator on lattice

site n. We will use short-distance three- and four-nucleon

operators as probes of the nuclear clusters. To construct a

probe for alpha clusters, we define ρ4 as the expectation

value of ∶ρ4ðnÞ=4!∶ summed over n. The ∶∶ symbols

indicate normal ordering where all annihilation operators

are moved to the right and all creation operators are moved

to the left. For nuclei with even Z and even N, there

are likely no well-defined 3H or 3He clusters since their

formation is not energetically favorable. Therefore, we can

use short-distance three-nucleon operators as a second

probe of alpha clusters. We define ρ3 as the expectation

value of ∶ρ3ðnÞ=3!∶ summed over n. A 3H or 3He cluster

may form in nuclei with odd Z or odd N. In these cases we

can use spin- and isospin-dependent three-nucleon oper-

ators to probe the 3H and 3He clusters. As we consider only

nuclei with even Z and even N here, we focus on ρ3 and ρ4
for the remainder of the discussion. We note that another

measure of clustering in nuclei by measuring short-distance

correlations has been introduced in Ref. [27].

Because of divergences at short distances, ρ3 and ρ4 will

depend on the short-distance regularization scale, which in

our case is the lattice spacing. However, the regularization-

scale dependence of ρ3 and ρ4 does not depend on the

nucleus being considered. Therefore, if we let ρ3;α and ρ4;α
be the corresponding values for the alpha particle, then the

ratios ρ3=ρ3;α and ρ4=ρ4;α are free from short-distance

divergences and are model-independent quantities up to

contributions from higher-dimensional operators in an

operator product expansion. The derivations of these state-

ments are given in the Supplemental Material [26]. We have

computed ρ3 and ρ4 for the helium, beryllium, carbon, and

oxygen isotopes. As our leading-order interactions are

invariant under an isospin mirror flip that interchanges

protons and neutrons, we focus here on neutron-rich nuclei.

The results for ρ3=ρ3;α and ρ4=ρ4;α are presented in Fig. 1(b).

As we might expect, the values for ρ3=ρ3;α and ρ4=ρ4;α are

roughly the same for the different neutron-rich isotopes of

each element.

Since ρ4 involves four nucleons, it couples to the center

of the alpha cluster while ρ3 gets a contribution from a

wider portion of the alpha-cluster wave function.

Therefore, a value larger than 1 for the ratio of ρ4=ρ4;α
to ρ3=ρ3;α corresponds to a more compact alpha-cluster

shape than in vacuum, and a value less than 1 corresponds

to a more diffuse alpha-cluster shape. In Fig. 1(b) we

observe that the ratio of ρ4=ρ4;α to ρ3=ρ3;α starts at 1 or

slightly above 1 when N is comparable to Z, and the ratio

gradually decreases as the number of neutrons is increased.

This is evidence for the swelling of the alpha clusters as

the system becomes saturated with excess neutrons. The

effect has also been seen in 6He and 8He in Green’s function

Monte Carlo calculations [28].

We comment here that if one wants to study the swelling

of alpha clusters in detail, then there are other local

operators that provide more direct geometrical information

such as the operators ∶ρ3ðnÞρðn0Þ∶ and ∶ρ2ðnÞρ2ðn0Þ∶,
where n

0 is a nearest-neighbor site to n. These local

operators have the advantage of measuring four-nucleon

correlations directly rather than inferring them from the

ratio of four-body and three-body correlations, which may

not work well for cases with very large isospin imbalance.
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FIG. 1. In panel (a) we show the ground state energies versus

number of nucleons A for the hydrogen, helium, beryllium,

carbon, and oxygen isotopes. The errors are 1 standard deviation

error bars associated with the stochastic errors and the extrapo-

lation to an infinite number of time steps. In panel (b) we show

ρ3=ρ3;α and ρ4=ρ4;α for the neutron-rich helium, beryllium,

carbon, and oxygen isotopes. The error bars denote 1 standard

deviation errors associated with the stochastic errors and the

extrapolation to an infinite number of time steps. For comparison

we show also the number of alpha clusters, Nα.
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The traditional approach to nuclear clustering usually

involves a variational ansatz where the wave function is

expanded in terms of some chosen set of alpha-cluster wave

functions. However, the answer obtained this way may

depend strongly on the details of the interactions and the

choice of alpha-cluster wave functions. This problem of

model dependence is solved by calculating short-range

multinucleon quantities. Even though we use only short-

range operators, the quantities ρ3=ρ3;α and ρ4=ρ4;α act as

high-fidelity alpha-cluster detectors. Their values are

strongly enhanced if the nuclear wave function has a

well-defined alpha-cluster substructure. As shown in the

Supplemental Material [26], the enhancement factor for

ρ3=ρ3;α is ðRA=RαÞ
6, where RA is the nuclear radius and Rα

is the alpha-particle radius. The enhancement factor for

ρ4=ρ4;α is an even larger factor of ðRA=RαÞ
9.

We denote the number of alpha clusters as Nα. A simple

counting of protons gives Nα ¼ 1 for neutron-rich helium,

Nα ¼ 2 for neutron-rich beryllium, Nα ¼ 3 for neutron-rich

carbon, and Nα ¼ 4 for neutron-rich oxygen. However, the

alpha clusters are immersed in a complexmany-body system,

and it is useful to quantify the entanglement of the nucleons

comprising each alpha cluster with the outside medium. The

observables ρ3=ρ3;α and ρ4=ρ4;α are useful for this purpose.

Let us define δ
ρ3
α as the difference ρ3=ρ3;α − Nα divided by

Nα. Since δ
ρ3
α measures the deviation of the nuclear wave

function from a pure product state of alpha clusters and

excess nucleons, we call it the ρ3 entanglement of the alpha

clusters. In an analogous manner, we can also define the ρ4
entanglement δ

ρ4
α as the difference ρ4=ρ4;α − Nα divided by

Nα. δ
ρ4
α turns out to be quantitatively similar to δ

ρ3
α , though

with more sensitivity to the shape of the alpha clusters.

In Fig. 1(b), we showNα along with the ratios ρ3=ρ3;α and

ρ4=ρ4;α. The relative excess of ρ3=ρ3;α compared toNα gives

δ
ρ3
α , and the relative excess of ρ4=ρ4;α compared to Nα gives

δ
ρ4
α . We see that δ

ρ3
α is negligible for 6He and 8He, indicating

an almost pure product state of alpha clusters and excess

neutrons. For the beryllium isotopes, δ
ρ3
α is about 0.18 for 8Be

and rises to about 0.34 for 14Be. In this leading-order

calculation the 8Be ground state is about 1 MeV below the

two-α threshold. The addition of the Coulomb interaction

and other corrections should push this energy closer to

threshold, and one expects δ
ρ3
α to decrease as a result. For the

carbon isotopes, it is about 0.28 for 12C and rises to a

maximum of about 0.50 near the drip line. For the oxygen

isotopes, δ
ρ3
α is about 0.50 for 16O and increases with neutron

number up to 0.73. For such high values of the ρ3 entangle-

ment, we expect a simple picture in terms of alpha clusters

and excess neutrons will break down. δ
ρ3
α should be much

lower for excited clusterlike states of the oxygen isotopes.

With ρ3 entanglement, we have a model-independent quan-

titative measure of nuclear cluster formation in terms of

entanglement of the wave function. Our results show that the

transition from clusterlike states in light systems to nuclear

liquidlike states in heavier systems should not be viewed as a

simple suppression of multinucleon short-distance correla-

tions, but rather an increasing entanglement of the nucleons

involved in the multinucleon correlations.

Despite the many computational advantages of auxiliary-

field Monte Carlo methods, one fundamental deficiency

is that the simulations involve quantum states that are

superpositions of many different center-of-mass positions.

Therefore, density distributions of the nucleons cannot be

computed directly. To solve this problem we have devel-

oped a new method called the pinhole algorithm. In this

algorithm an opaque screen is placed at the middle time

step with pinholes bearing spin and isospin labels that allow

nucleons with the corresponding spin and isospin to pass.

We use A pinholes for a simulation of A nucleons, and

the locations as well as the spin and isospin labels of

the pinholes are updated by Monte Carlo importance

sampling. From the simulations, we obtain the expectation

value of the normal-ordered A-body density operator

∶ρi1;j1ðn1Þ � � � ρiA;jAðnAÞ∶, where ρi;j is the density operator
for a nucleon with spin i and isospin j.
Using the pinhole algorithm, we have computed the

proton and neutron densities for the ground states of 12C,
14C, and 16C. In order to account for the nonzero size of the

nucleons, we have convolved the point-nucleon distribu-

tions with a Gaussian distribution with root-mean-square

radius 0.84 fm, the charge radius of the proton [29,30]. The

results are shown in Fig. 2 along with the experimentally

observed proton densities for 12C and 14C [31], which we

define as the charge density divided by the electric charge

e. From Fig. 2 we see that the agreement between the

calculated proton densities and experimental data for 12C

and 14C is rather good. We show data for Lt ¼ 7, 9, 11, 13,

15 time steps. The fact that the results have little depend-

ence on Lt means that we are seeing ground state proper-

ties. As we increase the number of neutrons and go from
12C to 16C, the shape of the proton density profile remains

roughly the same. However, there is a gradual decrease in

the central density and a broadening of the proton density

distribution. We see also that the excess neutrons in 14C and
16C are distributed fairly evenly, appearing in both the

central region as well as the tail.

We now study the alpha-cluster structures of 12C, 14C,

and 16C in more detail. In order to probe the alpha cluster

geometry, we use the fact that there is only one spin-up

proton per alpha cluster. Using the pinhole algorithm, we

consider the triangular shapes formed by the three spin-up

protons in the carbon isotopes. This correlation function

is free of short-distance divergences, and so, up to the

contribution of higher-dimensional operators, it provides a

model-independent measure that serves as a proxy for the

geometry of the alpha-cluster configurations.

The three spin-up protons form the vertices of a triangle.

When collecting the lattice simulation data, we rotate the

triangle so that the longest side lies on the x axis. We also
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rescale the triangle so the longest side has length 1, and flip

the triangle, if needed, so that the third spin-up proton is in

the upper half of the xy plane. Histograms of the third spin-

up proton probability distributions for 12C, 14C, and 16C are

plotted in Figs. 3(a)–3(c) using the data at Lt ¼ 15 time

steps. The data for other values of Lt are almost identical.

There is some jaggedness due to the discreteness of the

lattice, but we see quite clearly that the histograms for 12C,
14C, and 16C are very similar. While there is some increase

in the overall radius of the nucleus, the rescaled cluster

geometry of the three carbon isotopes remains largely the

same. In each case we see that there is a strong preference

for triangles where the largest angle is less than or equal to

90 deg. We should note that idea that the ground state of 12C

has an acute triangular alpha-cluster structure has a long

history dating back to Ref. [32].

Given the rich cluster structure of the excited states of
12C, this raises the interesting possibility of similar cluster

states appearing in 14C and 16C. In particular, the bound 0
þ
2

state at 6.59 MeV above the ground state of 14C may be a

bound-state analog to the Hoyle state resonance in 12C at

7.65 MeV [33,34]. It may also have a clean experimental

signature since low-lying neutron excitations are sup-

pressed by the shell closure at eight neutrons. There is

also a bound 0
þ
2
in 16C; however, in this case one expects

FIG. 3. The two red spheres with arrows indicate the first two

spin-up protons, and the line connecting them is the longest side

of the triangle. We show the third spin-up proton probability

distribution in 12C in panel (a), 14C in panel (b), and 16C in panel (c).

The results are computed at Lt ¼ 15 time steps. In panel (d) we

show the third spin-up proton probability distribution for a simple

Gaussian lattice model of the distribution of the spin-up protons.
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FIG. 2. Plots of the proton and neutron densities for the ground

states of 12C, 14C, and 16C vs radial distance. We show data for

Lt ¼ 7, 9, 11, 13, 15 time steps. We show 12C in panel (a), 14C in

panel (b), and 16C in panel (c). The errors are 1 standard deviation

error bars associated with the stochastic errors. For comparison

we show the experimentally observed proton densities for 12C

and 14C [31].
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low-lying two-neutron excitations to be important, thereby

making the analysis more complicated. We note that there

is ample experimental evidence for the cluster properties of

the neutron-rich beryllium and carbon isotopes [35–38].

In order to analyze what we are seeing in the lattice data,

we can make a simple Gaussian lattice model of the

distribution of the spin-up protons. We consider a proba-

bility distribution Pðr1; r2; r3Þ on our lattice grid for the

positions of the protons r1, r2, and r3. We take the

probability distribution to be a product of Gaussians with

root-mean-square radius 2.6 fm (charge radius of 14C) and

unit step functions that vanish if the magnitude of r1 − r2,

r2 − r3, or r3 − r1, is smaller than 1.7 fm (charge radius

of 4He),

exp

�

−

P

i ri
2

2ð2.6 fmÞ2

�

Y

j>k

θðjrj − rkj − 1.7 fmÞ: ð1Þ

We can factor out the center-of-mass distribution of the

three spin-up protons and recast the Gaussian factors as a

product of Gaussians for the separation vectors r1 − r2,

r2 − r3, or r3 − r1 with root-mean-square radius 4.5 fm,

Y

j>k

exp

�

−

ðrj − rkÞ
2

2ð4.5 fmÞ2

�

θðjrj − rkj − 1.7 fmÞ: ð2Þ

In Fig. 3(d) we show the third spin-up proton probability

distribution corresponding to this model. Despite the

simplicity of this model with no free parameters, we note

the good agreement with the lattice data for 12C, 14C, and
16C. The only discrepancy is that the model overpredicts the

probability of producing obtuse triangular configurations.

This indicates that there are some additional correlations

between the clusters that go beyond this simple Gaussian

lattice model.

In this Letter we have presented a number of novel

approaches to computing and quantifying clustering and

entanglement in nuclei. We hope that this work may help to

accelerate progress in theoretical and experimental efforts

to understand the correlations that produce nuclear cluster-

ing and collective behavior.
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