000842648 001__ 842648
000842648 005__ 20210129232419.0
000842648 0247_ $$2doi$$a10.1007/s10915-016-0286-6
000842648 0247_ $$2ISSN$$a0885-7474
000842648 0247_ $$2ISSN$$a1573-7691
000842648 0247_ $$2WOS$$aWOS:000394326400018
000842648 037__ $$aFZJ-2018-00855
000842648 082__ $$a004
000842648 1001_ $$0P:(DE-HGF)0$$aKaiser, Klaus$$b0$$eCorresponding author
000842648 245__ $$aA New Stable Splitting for the Isentropic Euler Equations
000842648 260__ $$aNew York, NY [u.a.]$$bSpringer Science + Business Media B.V.$$c2017
000842648 3367_ $$2DRIVER$$aarticle
000842648 3367_ $$2DataCite$$aOutput Types/Journal article
000842648 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579529786_30845
000842648 3367_ $$2BibTeX$$aARTICLE
000842648 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842648 3367_ $$00$$2EndNote$$aJournal Article
000842648 520__ $$aIn this work, we propose a new way of splitting the flux function of the isentropic compressible Euler equations at low Mach number into stiff and non-stiff parts. Following the IMEX methodology, the latter ones are treated explicitly, while the first ones are treated implicitly. The splitting is based on the incompressible limit solution, which we call reference solution. An analysis concerning the asymptotic consistency and numerical results demonstrate the advantages of this splitting.
000842648 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842648 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000842648 588__ $$aDataset connected to CrossRef
000842648 7001_ $$0P:(DE-HGF)0$$aSchütz, Jochen$$b1
000842648 7001_ $$0P:(DE-Juel1)169281$$aSchöbel, Ruth$$b2$$ufzj
000842648 7001_ $$0P:(DE-HGF)0$$aNoelle, Sebastian$$b3
000842648 773__ $$0PERI:(DE-600)2017260-6$$a10.1007/s10915-016-0286-6$$gVol. 70, no. 3, p. 1390 - 1407$$n3$$p1390 - 1407$$tJournal of scientific computing$$v70$$x1573-7691$$y2017
000842648 8564_ $$uhttps://juser.fz-juelich.de/record/842648/files/10.1007_s10915-016-0286-6.pdf$$yRestricted
000842648 8564_ $$uhttps://juser.fz-juelich.de/record/842648/files/10.1007_s10915-016-0286-6.gif?subformat=icon$$xicon$$yRestricted
000842648 8564_ $$uhttps://juser.fz-juelich.de/record/842648/files/10.1007_s10915-016-0286-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000842648 8564_ $$uhttps://juser.fz-juelich.de/record/842648/files/10.1007_s10915-016-0286-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000842648 8564_ $$uhttps://juser.fz-juelich.de/record/842648/files/10.1007_s10915-016-0286-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000842648 8564_ $$uhttps://juser.fz-juelich.de/record/842648/files/10.1007_s10915-016-0286-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000842648 909CO $$ooai:juser.fz-juelich.de:842648$$pVDB
000842648 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169281$$aForschungszentrum Jülich$$b2$$kFZJ
000842648 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842648 9141_ $$y2017
000842648 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000842648 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SCI COMPUT : 2015
000842648 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842648 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842648 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842648 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842648 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842648 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842648 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842648 980__ $$ajournal
000842648 980__ $$aVDB
000842648 980__ $$aI:(DE-Juel1)JSC-20090406
000842648 980__ $$aUNRESTRICTED